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ABSTRACT

Antibodies are an important class of biological drugs, but suffer from various limitations, such

as inadequate pharmacokinetics, humanization protocol, adverse immunogenicity and high

production costs. Synthetic peptides with high affinity and specificity for the desired target

represent an important alternative to antibodies but the design of such peptides is limited by

our knowledge of the antibody-antigen interface complementarity mechanisms.

The rapid expansion of the available antibody-antigen complex structure have made the study

of those complex a major way to gain insight into the interface properties. To identify the in-

teracting residues in a given antibody-antigen interface we used Interface Interacting Residue

(I2R), a selection method based on computed molecular interactions. This new selection al-

lowed us to assess other interface selection techniques and compare them. To store all the data

such as the structure, epitope and paratope computed from the different selection methods and

their properties we created the Epitope-Paratope Interface DataBase (EPI-DB) specially ded-

icated to study complementarity of Ab-Ag interface using structural and physicochemical

properties. Using ensemble of linear model prediction based on physicochemical properties

we were able to assess if a pair of epitope-paratope (both sequence coming from the same

complex structure) was mismatched or not and achieved an area under the curve of 0.7633
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showing the capacity of an epitope properties to predict paratope characteristics

The aggregation of all the molecular interactions between epitope and paratope residues

allowed us to transform the 3D antibody-antigen complex structures into interface graphs.

Based on these data and the probability of molecular interaction we developed EPI-Peptide

Designer tool that uses predicted paratope residues for an epitope of interest to generate tar-

geted peptide ligand libraries. EPI-Peptide Designer successfully predicted 301 peptides able

to bind to LiD1 target protein (65% of the experimentally tested peptides). This tool should

enable the development of a new generation of synthetic interacting peptides that could be

very useful in the biosensor, diagnostic and therapeutic fields.

In addition, to further understand the complementarity mechanisms from Ab-Ag, we investi-

gated the differences between Human antibodies and mice antibodies. Using the data avail-

able in EPI-DB we compared epitope and paratope according to the organism source and

found that paratope of mice antibodies contains 5% more tyrosine than the Human one. Us-

ing linear model we found possible to predict if a protein epitope is complexed with Human

Ab of mice Ab only using its secondary structure.

All of those results helps us better understand the complementarity mechanisms of the anti-

body antigen interface and will help improve peptide binders design and overpass some drug

antibodies limitations.
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CHAPTER 1

Introduction

1.1 Protein-Protein Interface

Protein-Protein interactions (PPI) are at the core of biological processes. They are involved in

all steps of a living organism biochemistry and are crucial to the understanding of all in vivo

functions, cellular regulation, biosynthesis, degradation pathways, signal transduction, initia-

tion of DNA replication, transcription, translation, multi-molecular associations, packaging,

oligomer formation and the immune response (Keskin et al., 2005). The heart of immune

response rely on the Antibodies (Ab)-Antigen (Ag) recognition, making the Ab-Ag complex

a specific type of PPI of great interest. Determining which parts of the Ab are essential for Ag

recognition and vice-versa is necessary for understanding B cell-mediated immunity. More-

over Abs are commonly used in molecular biology and are a potent tool for biotechnology

and biomedicine (Maynard and Georgiou, 2000). The region of the antibodies that recognize

antigens, called paratope, is included in the Complementarity Determining Regions (CDR)

and the region of the antigen recognized by antibodies is named epitope.

1.2 Complementarity Determining Regions

Complementarity Determining Regions are formed of six variable loops, three from the light

chain (CDRL1-3) and three from the heavy chain (CDRH1-3) (Chothia et al., 1989; Mian

et al., 1991). Defining the limits of the CDRs can nowadays be done with different methods.
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Firstly Kabat and co-workers (Wu and Kabat, 1970; Kabat et al., 1983) used the high vari-

ability of the CDR compared to the framework region of the Abs to identify the boundaries

in a systematic way. Using alignment, they developed a numbering technique to automati-

cally mark positions for all new Abs sequences. Chothia and Janin used sequence of a small

number of reference Abs to identify the CDRs. The method is based on the observation that

CDR loop’s amino-acids composition is highly variable compared to the antibody framework.

Using an alignment of sequence was established a numbering system used to identify the

conserved residues that delimitates the CDRs. Lefranc and co-worker developed the IMGT

database (Lefranc, 1998) containing nowadays more than 176.000 immunoglobulins (IG) and

T-cell receptors curated genes as well as more than 4000 annotated structure of Abs. The

IMGT developed a uniform numbering system based on previous techniques and is homo-

geneous for various IG and TR including antibody heavy or light chain of different species.

More recently Ofran and co-workers (Kunik et al., 2012b) developed Paratome which used a

structural consensus of a set Ab-Ag complexes to determine the Ag Binding Regions (ABRs).

They use this consensus to predict from other sequences or structures the limits of the ABRs.

The identification of CDRs from sequence or structure defines one side of the interface. The

amino-acids from the antigen in contact with the CDRs forming the other side, called the

epitope.

1.3 Epitope prediction

Epitope can be divided into two categories: continuous (also called linear) in which all

residues are consecutive in the sequence and discontinuous (or conformational) where the

epitope is formed of multiple distant parts of the Ag sequence. Interface size and shape can

take different forms and have different degrees of complementarity (Figure 1.1) leading to the

fact that the majority of the epitopes are conformational (Pellequer et al., 1991).
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Epitopes are at the center of the humoral immune response (Silverstein, 1990). Antigen recog-

nition depends on the affinity and specificity of the antibody (Abbas and Lichtman, 2005),

physicochemical properties and structure of the epitope (Greenbaum et al., 2007). Predicting

an epitope limits for a given antigen remain problematic (Hopp and Woods, 1981), at least

without structural information. Identified correctly, an epitope sequence can synthesize and

replace the parent antigen, allowing antibody production, through immunization (Emini et al.,

1985; Moyle and Toth, 2013), purification of interface specific monoclonal antibody (Murray

et al., 2001) or antibody detection from patient serum using complement fixation test used to

diagnose infection and other diseases (Rao, 2005) . Prediction of the epitope from protein

sequence was firstly attempted in the 1980s and was based on on amino acid properties such

as flexibility (Karplus and McCammon, 1986), hydropathy (Parker et al., 1986), antigenicity

(Greenbaum et al., 2007) or structural properties such as beta turns (Pellequer and Westhof,

1993a) and accessibility (Davydov and Tonevitski, 2009). Later on, with the increase of

available data, researchers improved the prediction method using multiple parameters such as

solvent accessibility, flexibility, and secondary structure propensities (Pellequer et al., 1991;

Pellequer and Westhof, 1993b; Alix, 1999).

Later on, a new generation of methods would combine many of those properties (Pellequer

and Westhof, 1993a; Alix, 1999; Odorico and Pellequer, 2003). Then in 2005, Blythe and

Flower showed that almost 500 properties did not perform sufficiently good. Since then

epitope prediction has slided from simple propensity analysis to multiple parameters using

more complex data mining and knowledge-based methods (Gao and Kurgan, 2014) such

as neural network (ABCPred)(Saha and Raghava, 2006) or support vector machine (COBE-

pro)(Sweredoski and Baldi, 2009) or even graph model (BeTOP)(Zhao et al., 2012). Nowa-

days prediction methods encounter different difficulties like data quality (Greenbaum et al.,

2007; Denh et al., 2011), quantity of positive elements or proper negative data (Subramanian

and Chinnappan, 2013).
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With the rapid expansion of crystallography techniques allowing the resolution of protein-Ab

complexes, interfaces can be studied directly from the structures and give a reliable reference

for the epitope prediction, but raised the problematic of the interface limits selection.
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Fig. 1.1: Pheasant egg white lysozyme antigen-antibody complex structure (1JHL) showing (A) a
side view of interaction region surfaces and (B) the interfaces turned 90° so that the epitope-containing
and paratope-containing surfaces (with 80% transparency) can be better visualized. Images from:
Ramaraj et al. (2012).
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1.4 Interface limits selection

Three methods exist nowadays to determine interface boundaries: The first use a cutoff on the

euclidean distance between the atoms of the antibody and antigen (Chothia and Janin, 1975;

Lo Conte et al., 1999). The second is based on the Difference of Accessible Solvent Area

(∆ASA) between the split and complexed proteins (Janin and Chothia, 1990; Chakrabarti

and Janin, 2002). These two methods can be adapted using different cutoff values or even

combined leading to the Epitope Containing Sequence and Paratope Containing Sequence as

defined by Ramaraj and co-workers 2012. Finally, the last approach defines interfaces through

computational geometry using Voronoi diagrams and the alpha shapes theory (Pontius et al.,

1996) used by Goncalves-Almeida et al.2012. These selection methods have evolved and

gained complexity with the increase in antibody-antigen complex structures available.

1.5 Antigen-Antibody interface

In 1986, Novotny et al. demonstrated using crystallographic structures that the accessible

surface area (ASA) is a better parameter to assess the antigenicity than hydrophilicity used by

the first epitope prediction methods. In 1990, Davies et al. used 6 Ab-Ag complexes including

2 different protein antigens (lysozyme and neuraminidase) to describe the interface in surface

area, number of residues buried and in contact. The interface area was observed to be from

137 to 879 Ångström square ( Å
2

), the number of residues for the antigen was found to be

24 to 32 and 14 to 21 for buried and in contact respectively. For the antibody the number of

buried amino-acid observed was from 22 to 32 while the contact residue number was 14 to 21.

They also noticed that the Abs had a conserved structure, in which only the Complementarity

Determining Regions (CDR) presented a high structural variability. The same year Laver

et al. , using 5 structures of 2 different complexes to describe the protein-ab interface. They
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found that the epitope was composed of 15 to 22 amino-acids compressed in a narrow span

of 650 to 900 Å
2

and forming with the Ab 75 to 120 Hydrogen Bond (HB) as well as other

molecular interactions. Analysis of the number of residues from the Ab in the interface was

similar to the epitope (Laver et al., 1990). In the work from Mian et al., in 1990, six structures

were analyzed among those only one was a Protein-Ab complex and confirmed the solvent

exposure as primordial factor of the epitope prediction. For the paratope the most important

residues were Ser, Thr, Trp and especially Tyr representing alone 25% of the residues. In

1993, Lawrence and Colman introduced the shape complementarity index (Sc) allowing to

measure the nesting of the antibody with the antigen . Their work showed that the Ab-Ag

interface has a significantly poorer Sc than other protein-protein complex. Later on, part of a

PPI study by Jones and Thornton in 1996, 86 structures of protein interaction were described

including 6 Ag-Ab. The ∆SAS of those complexes was found to have a mean of 777Å
2

with

a Standard Deviation (SD) of 135.33, both measures being lower than any other types of PPI.

The planarity of the interface was also reduced compared to other PPI. In 1996 MacCallum

et al. gathered 26 Ab-Ag complexes and compared the interface shape in function of the Ag

size. They concluded that the interface is concave for small Ag and planar for the big ones.

The same year Cohen and Davies focus on 6 anti-idiotic structures of protein-Ab and observed

the predominance of the heavy chain over the light one in term of ∆SAS as well as interaction

count (Cohen et al., 1996). Three years later Lo Conte et al. in 1999 studied 19 interfaces

including seven lysozymes-Ab. The average interface span was found to be 1680Å
2

with a

SD of 260. They also defined the 3 groups of interface residues depending on the ∆SAS.

They showed that for the epitope the most predominant residue in the surrounding group is

Ser followed by Lys while the Tyr is highly enriched in the most central group.

In the 2000s the rapid progression of crystallographic techniques led to a fast progress con-

cerning structures resolution including Ab-Ag complexes. In 2002, Chakrabarti and Janin

used the notion of interface patches defined by Jones and Thornton (1996) to describe 18
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Ab-Ag structures. A patch is a group of interface’s residues clustered by an average linkage

method (Johnson RA, 1996) using a threshold distance of 15Å. Most of the Ab-Ag interface

only contained one patch but some were formed of 2 or 3 patches. Each of the patch was orga-

nized as described by Lo Conte et al.. In 2003 Sundberg et al. analyzed 30 Ab-Ag interfaces

detailing energy and interactions. The authors analyzed the ’hot spots’, defined as a residue

having a ∆∆G superior to 2.5 kcal/mol and noticed a higher concentration of hot spot residues

in the center of the interface. Sundberg and co-workers also observed that the partial hydra-

tion increases the Sc and form water mediated HB. In 2006, Haste Andersen et al. selected 76

structures and focused on the epitope properties in order to improve B-cell epitope prediction.

As previously shown, the majority of the epitope were conformational and contained 9 to 22

residues. More than 45% of the segments were composed of only one amino-acid. Rubinstein

et al. selected only 53 structures that were curated and non-redundant in 2007. The results of

their statistical analysis confirmed the significant enrichment of Tyr and Trp in the epitope as

well as charged and polar residues. The epitopic surface was found to be preferentially planar

and exposed with a high percentage of unorganized secondary structure. Rubinstein and co-

worker also noticed that epitope’s structure undergoes a compression when bound to the Ab

leading to important shape changes. In the work of Chen et al. in 2009, 192 structures were

selected. They divided this set into two, based on the Ag size, leading to a split analysis of

the Protein-Ab and Peptide-Ab. Comparing the shape of bound peptide with its native protein

structure showed very important variations since none of the superimposition could be done

without clashes or bumps. The peptide epitope secondary structure, computed with STRIDE

(Heinig and Frishman, 2004), showed a remarkable increase of Coil compared to the protein’s

ones. In 2012 Kringelum et al. gathered 107 non-similar Ab-Ag interfaces. They described

the epitope surface as flat, oblong, oval shaped containing a majority of hydrophobic residue

in the center and surrounded by charged amino-acids. Their statistical study of epitope com-

position concluded that none of the residue’s propensity was significantly different compared
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to the Ag surfaces. Unlike the epitope, the paratope amino-acid composition showed signif-

icant variations for 14 out of the 20 residues. Tryptophan and Tyrosine showed the major

enrichment while Pro, Lys and Gly were significantly impoverished. Also in 2012, Ramaraj

et al. selected 53 non-redundant interfaces and , as previously, observed enrichment of aro-

matics residues in the paratope. Based on an euclidean distance and ∆SAS they computed the

interaction (based on distance) frequencies for all epitope-paratope amino-acid couple (Figure

1.2). Containing Sequence (ECS) and Paratope Containg Sequence (PCS) have very specific

pattern of interaction in term of residues. Hydrophobic residues such as Iso and Leu interact

with themselves to form hydrophobic bond. The Arg from the ECS is found to interact with

the Trp while the PCS one interacts mainly with Tyr. The epitope Met having a low repre-

sentation is found to interact with high specific interaction frequency with Phe and Met in the

paratope

The same year Sela-Culang et al. and co-workers compared 49 Ab’s free and bound structures.

They concluded that concerning the variable domain of the Ab, only the CDR-H3 undergoes

significant binding-related conformational changes in about one third of the antibodies struc-

tures. Meanwhile a loop from the H chain implicated in the inter-chains interaction present

superior conformation modification than the variable ones. The constant regions surrounding

the CDRs also present structure modification in a proportion related to the size of the Ag, the

bigger the Ag, the bigger the change. Still in 2012, Dario et al used 28 structures of free and

bound fragment Ab (Fab) to investigate dynamic coordination and intra-molecular interac-

tions changes upon binding. Their study concluded that Fab internal dynamic, coordination

pattern and molecular interactions are modified when binded to the Ag and not only in vari-

able domains. In 2013 by Stave and Lindpaintner selected 111 Proteins-Ab crystallography

from the PDB with different Abs. Using a 4Å selection they found that the size of the Ab and

Ag interface was sensibly equivalent. The number of residues selected from the heavy chain

was superior to the light chain in 92 out of the 111 structures, confirming precedent results
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Table 1.1: Epitope and paratope properties

Epitope Residue Number For Protein Ag : 9 to 22 Amino Acids.5

Epitope Residue Propensities High occurrence of hydrophobic and aromatic in the cen-
ter and charged in the surrounding area.4,6

Epitope sequence Mostly conformational epitope, segment from 1 to 12
residues.5

Paratope Residue Number 14 to 20 Amino-acids, usually bigger than the epitope.8

Paratope Residue Propensities Until 25% of Tyr, Trp and charged also enriched.1,4,8

Interface Dimension From 600 to 2000Å depending on the Ag size.4

Epitope Surface Oval, exposed and unorganized secondary structure.3,7,8

Epitope 3D shape Planar for the big Ag and concave for the small ones.3,6

Shape complementarity Significantly poorer than Protein-Protein Interaction.2

Epitope conformation changes Compression upon binding.6,7

Ab conformation changes Compression upon binding proportional to the Ag size,
modification in the L-H chain contacts6,7,9

1Mian et al. (1991) 2Lawrence and Colman (1993) 3MacCallum et al. (1996) 4Lo Conte et al. (1999)
5Haste Andersen et al. (2006) 6Rubinstein et al. (2008) 7Chen et al. (2009) 8Kringelum et al. (2012)

9Sela-Culang et al. (2012)

about the superior importance of the heavy chain in the interface. To our knowledge the most

recent study using a set of crystallographic structures to extract pattern of the interface was

made by Robin et al. in 2014. Using a set of 227 antibody-antigen structures and, by analyz-

ing free binding energy, they demonstrated that for the paratope as few as 8 residues out of 30

important positions are enough to explain 80% of the binding energy.

From the beginning of the 1990s to nowadays, the studies of Ag-Ab crystallographic com-

plexes have become one of the major way to gain insight into the interface’s mechanism

(Table.1.1). The evolution was directly related to the improvement of the X-ray resolutions

techniques that have rapidly evolve in the last 25 years. The knowledge obtained from such

studies have directly benefited to the techniques such as epitope prediction, antibody engi-

neering and design of mimetic peptides.
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Fig. 1.2: Specific interaction frequency. Ae = Average over each row; Ap = Average over each
column. Epitope Containing Sequence (ECS) and Paratope Containg Sequence (PCS). Highest to
lowest interactions interaction between residues from the PCS (columns) are ECS (rows). Interaction
ranking is graded as the highest being red > green > blue > yellow. Figure and legend from Ramaraj
et al. (2012)
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1.6 The importance of antibody

Antibodies are very versatile molecules used as molecular probes in research and also the

most important biological drug with nowadays more than 30 Abs and derivative approved by

the Food and Drug Administration (Beck et al., 2010). Even though full Immunoglobulin

Gamma (IgG) are mostly used, smaller Ab fragments retaining binding capacity have been

expending. The most used antibody fragment is Fragment Ab (Fab), produced by Papain

enzymatic digestion, followed by the Single-chain Fragment variable (scFv), composed only

by the variable fragment of both Light chain (CL) and Heavy chain (CH) joined by a linker

(Porter, 1959; Bird et al., 1988). The figure 1.3 shows the different fragments and their con-

struction. Both of those fragments maintain binding capacity but loose their immune system

inducing function (Jain et al., 2007). The minibody is made of 2 ScFv joined by 2 CH3 portion

of the heavy chain.
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Fig. 1.3: Structure of intact immunoglobulin G (IgG) molecule, a minibody, and monomeric antibody
fragments: Fab (antibody fragment), Fv (variable fragment), and scFv (single chain variable fragment).
Variable domains of heavy (VH) and light (VL) chains are represented by black and white ovals,
respectively. Constant regions of heavy (CH1-3) and light (CL) chains are represented by shaded and
dotted ovals, respectively. ABD = antigen-binding domain (paratope). Figure and legend from Azzazy
and Highsmith (2002)

1.7 Limitation of drug’s antibody

The most common method to produce Monoclonal Antibodies (MAb) is through injection

of purified protein antigen into animals and isolation of the Abs binding to the native Ag

after spleen cells extraction. Selected cells are then fused with immortal myeloma cells ob-

taining an almost immortal cell producing antibody binding to the desired antigen (Figure

1.4). This methodology present various limitations and disadvantages. Obtaining a satisfac-

tory immune response from a living organism require multiple injections of purified antigen

(Leenaars and Hendriksen, 2005). Therefore immunization protocol suffers limitations from

the cost and difficulties to obtain sufficient amount of pure antigen as well as usage of live

animals. Immunization are also very problematic when dealing with lethal or toxic protein.

Concerning the monoclonal antibody production both in vivo or in vitro techniques suffers

limitations. When selection and production are successful the MAb needs to be purified and
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stored which, in the case of large molecules, can be difficult requiring very low temperature in

order to preserve their structure. In the case of therapeutic usage, monoclonal antibody lack

of administration’s route. Most therapeutic Abs require intravenous administration however

some have been approved for subcutaneous or intramuscular but never orally (Wang et al.,

2008). Drug antibody also suffer from poor pharmacokinetic due to poor tissue penetration

and rapid proteolysis (Pimm, 1988). Being produced by animal organism (mice) MAb can

also cause undesired allergic reaction to the patient. With the rapid expansion of antibody

use in the year 2000, patents on antibody engineering have prompted the biotechnology com-

panies to develop proprietary antibody humanization (Lugovskoy et al., 2010), adding legal

restriction to the MAb usage (Hanf et al., 2014).

Improvement of the crystallographic techniques and structure prediction have made de novo

protein design an important part of the biotechnology and gives hope for synthetic antibod-

ies. Computationally predicting peptide or protein with specific binding affinities is nowadays

possible with a certain accuracy (London and Ambroggio, 2013).Stranges and Kuhlman re-

viewed success and failure of de novo protein design and showed that predicted interfaces

are smaller than real PPI and also that the predicted hydrogen bonds are not carefully com-

puted. The biggest limitation of de novo protein design is the limited accuracy of structure

prediction from protein sequence as described in the work of Pantazes et al.. Applying this

methodology to Abs in order to create synthetic antibody is a complex task, partly due to the

uncommon structure of the Ab framework. In order to overpass the antibody limitations many

efforts have been made to design and create small biological molecules with binding capacity.
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Fig. 1.4: Step by step protocol of monoclonal antibody production. Mouse are injected with the
specific antigen to force the immune system to react and produce specific antibody against it. B-
cells are extracted from the spleen and fused with immortal myeloma cells. Hybridoma cells produce
antibody which are extracted and purified. Source: http://www.kyowa-kirin.co.jp/antibody

1.8 Peptide binder

1.8.1 Combinatorial peptide libraries using phage displayed

The design of peptide with affinity for a specific target would offer a viable replacement of

drug antibody. To guide the design and increase the affinity and specificity of these pep-

tide drugs, different methodologies exist such as directed evolution, high-throughput protein

screening or rational design based on protein-peptide interactions (Pei and Wavreille, 2007;

Yin et al., 2007; Vanhee et al., 2011). One way to produce peptide binders in vitro is through

phage display using Combinatorial Peptide Libraries (CPLs) that allows discovery of new

peptides able to bind to desired target protein such as receptors, enzymes, virus, materials or

even small molecules. (Cwirla et al., 1997; Su et al., 2005; Hyde-DeRuyscher et al., 2000;

Welch et al., 2007; Matsubara et al., 2010; Whaley et al., 2000; Wang et al., 2003; Rodi et al.,
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1999). Peptides selected through phage display CPLs are often very closely related in term

of sequence and structure to the natural ligand they aim to mimic. Peptide binders selected

through CPLs can be used for a broad range of applications and can be stored in solution

or solid state for long period without loss of effectiveness but are often limited in term of

affinity to the target. Those issues can be explained by different reasons like the cell toxicity

of some peptides (Saar et al., 2005) and the use of peptide libraries from small sizes 107∼9

(Smith and Petrenko, 1997; Hoess, 2001) To avoid issues related to living cell and bacterio-

phage handling cell free methodologies were developed such as ribosomes display, mRNA

display and CIS display have been developed (Zahnd et al., 2007; Cotten et al., 2011; Ode-

grip et al., 2004a). Ribosome display has been used to select from CPLs peptide with affinity

for antibody (Mattheakis et al., 1994) or streptavidin (Lamla and Erdmann, 2003). Concern-

ing mRNA display, a covalent link peptide-mRNA is required but it allows larger size library

1012∼14 (Cho et al., 2000). CIS display, works in similar way than mRNA display but uses

DNA and replication protein A instead of puromycin (Ingmer et al., 2001; Odegrip et al.,

2004b).

1.8.2 Rational design

Rational design of peptide ligand uses the increase in knowledge about peptide binding (Van-

hee et al., 2009; London et al., 2010) to create and select possible binding sequences. Using

in silico mutagenesis Clackson and Wells (1995) discovered that peptide-protein interfaces

possess ’hotspot’ similar to all protein-protein interface. The number of ’hotspot’ residues de-

pending on the length of the peptide ranging from two for a peptide length from 6-8 residues

and three for peptides of size 9-11 (London et al., 2010). In case the structural information is

available for a drug target, more complex computational methods can be used such as neural

network (Honeyman et al., 1998), genetic algorithm, hidden Markov models or motif discov-

ery algorithm (Lin et al., 2008). Peptide ligand can also be derived from a crystallographic
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structure of a PPI. The first work achieving a such result was reported by Wild et al. (1994).

The authors designed a 36 residues anti-HIV peptide blocking an early step in the virus life

cycle before to reverse transcription. It became the first fusion inhibitor for HIV-1 therapy

named enfuvirtide (Fuzeon®) that was approved by the United States Food and Drug Admin-

istration (Naider and Anglister, 2009). Nevertheless successful design of peptide binder from

protein-protein interface is limited. Most of the working examples had to ensure that only a

few residues are important for the interface.

Peptide ligands bring solutions to some of the most central limitations of antibodies as a drug

such as production, storage and in a certain limit patent. Nevertheless designing specific

active peptides is not an easy task especially due to flexibility and environment dependent

conformation. In most of the successful approaches, modifications were done to, at least

partially, limit the peptides possible conformations. In order to force a small protein sequence

into a certain conformation scaffold can be used. Such a molecule can be of different natures

and various sizes depending on the objectives, sequence properties and nature of the target.

Most of the scaffolds used are derived from existing proteins or chemical constructs.

1.9 Proteic Scaffold

1.9.1 Fibronectin

The tenth type III domain of the human fibronectin is a β sandwich structured protein com-

posed of 94 amino acids resembling the immonoglobulin domain (Figure 1.5a). Through

randomization of one of the three exposed loops new binding activity was successfully cre-

ated (Koide et al., 1998; Lipovsek, 2011; Chen et al., 2013). Using yeast surface display

library Hackel et al. obtained a fibronectin domain with 3 pM affinity for lysozyme. Later

on, the same authors (Hackel et al., 2012) engineered an fibronectin domain binding to the
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epidermal growth factor receptor (EGFR). The fibronectin domain was labeled with copper

64 and successfully used to observe EGFR over-expressing xenografted tumors in mice using

the positron emission tomographic (PET) technique.

1.9.2 Affibodies

The affibody (or z protein ) is a protein composed of 58 residues forming three helical bundles

(Figure 1.5b), one of the smallest known cooperatively folding structural domain (Wickstrom

et al., 2006). Binding is usually obtained through randomization of 13 residues spatially

closed located on the first and second helix. Most known affibodies were engineered to target

Human Epidermal growth factor Receptor 2 (HER2) that achieved a 22 pM affinity and is used

for cancer HER2-expressing imagery (Orlova et al., 2006). One derivative form of affibody

was labeled with 111In and 68Ga for single-photon emission computed tomography imaging

of metastatic breast cancer patient (Baum et al., 2010). Affibodies have also been able to

target epidermal growth factor receptor (Tolmachev et al., 2010, 2009; Nordberg et al., 2008)

and insulin-like growth factor (Tolmachev et al., 2012).

1.9.3 Two helix affibodies

Two-helix affibodies are a smaller version of the affibodies which is downsized to 36 amino

acids. The loss of structural stability due to the third helix removal is partially compensated by

adding disulfide bond between the two helices (Honarvar et al., 2013; Webster et al., 2009).

Two-helix affibodies were also used for HER2 imaging achieving a lower uptake than the

classical affibody at the price of lower affinity (Honarvar et al., 2013; Rosik et al., 2012)
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1.9.4 Ankyrin

Ankyrin of Designed Ankyrin Repeat Protein (DARPin) is composed of a β turn followed

by two α-helices repeated 4 to 6 times (Figure 1.5c). DARPins reached affinities of 270nM

to 90nM for HER2 expressing tumor and was successfully used for imaging in mice using

Single-photon emission computed tomography (Tamaskovic et al., 2012)

1.9.5 Knottins

Knottins are a group of protein with a size ranging from 30 to 50 amino acids containing

three disulfide bonds forming a knotted structure shape (Moore and Cochran, 2012). Binding

has been obtained by peptide grafting into one loop followed by a process of affinity matu-

ration through randomization. Kimura et al. report an integrin-binding knottin . One of the

best affinity obtained using a knottin scaffold was achieved against a tripsin II inhibitor from

Momordica cochinchinensis with affinities of 3-6nM (Kimura et al., 2012).

1.9.6 Peptide aptamers

Peptide aptamers, also called thioredoxin-insert proteins, are the display of peptide ligands

onto the thioredoxin scaffold (Figure 1.5e) (Borghouts et al., 2008). Thioredoxin is a 105

amino acids long protein involved in the redox signaling pathways. Most common form of

thioredoxin used is the TrxA (Colas et al., 1996) from E. Coli (Li et al., 2011). The peptide

sequence are commonly generated using CPLs and selected using the yeast two-hybrid system

(Bickle et al., 2006). The peptide is inserted within a loop of the biological active center.

The folding of this scaffold likely limits the possible conformations of the peptide. This

importance of the scaffold influence on the peptide conformation was explored in the work of

Klevenz et al.
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1.9.7 Other protein scaffolds

A large variaty of other scaffold exists such as PDZ domain, neocarzinostatin or ribose-

binding protein. Those scaffolds can be with different technique to achieve new binding

such as error prone PCR, loop grafting or rational design (Figure 1.5f,g and h).

1.9.8 RAFT

Another possibility to proteic scaffold is the human-made Regioselectively Addressable Func-

tionalized Templates (RAFT) scaffold consisting of a cyclic peptide composed of 8 Lys di-

vided in two group of 4, each group separated by a prolylglycine. This modified residue acts

as β-type II turn inducers. Forcing the 10 residues cyclic peptide to adopt two turns induce

an antiparallel β sheet organization, locking the conformation of the structure. The Lys side

chain are then modified to display desired chemical molecules or peptides (Dumy et al., 1996).

Boturyn et al. used the RAFT platform to link the c[-RGDfK-] ( molecule with a high affinity

for αvβ3 integrin receptor) to different reporter group (including Biotin and fluorescein). This

construct was successfully used to mark αvβ3 integrin receptor expressing endocytosis cells.
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Fig. 1.5: (a–h) In combinatorial engineering approaches, sequences of a scaffold can be di-
versified at specified positions by means of defined randomized codons (e.g., in loops (a),
flat surfaces (b), combinations of loops and helices (c), or cavities (d )), or a random peptide
sequence is inserted into the scaffold (e), usually at a loop, or the scaffold sequence is random-
ized at undefined positions by error-prone PCR (f). Target-binding variants of the resulting
libraries are subsequently isolated using selection or screening technologies. In rational en-
gineering approaches, preexisting binding sequences (e.g. loops) have been grafted onto a
novel scaffold (g), or binding sites have been engineered de novo into a suitable scaffold (h).
The different engineering possibilities are illustrated by alternative binding molecules where
the engineering in question has been applied: loop randomization (fibronectin)(Koide et al.,
1998), flat surface randomization (protein Z)(Nord et al., 1997), loop and helix randomiza-
tion (ankyrin repeat protein)41, cavity randomization (lipocalin)(Beste et al., 1999), random
peptide insertion (thioredoxin)(Colas et al., 1996), error-prone PCR (PDZ domain)(Schneider
et al., 1999), loop grafting (neocarzinostatin)(Nicaise et al., 2004) and rational design (ribose-
binding protein)(Looger et al., 2003). Many other permutations of randomization strategies
and scaffolds are conceivable; this figure illustrates each strategy with one published example.
Figure and legend from Binz et al. (2005)
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1.10 Chemical Scaffold

The chemical scaffold makes one more step in the direction of reducing the antibody limi-

tation. By using a synthetic structure, limitations due to cell culture and protein expression

are removed. Peptides binders derived from CDR or phage display for example, are struc-

tured using a chemical scaffold such as peptoid nanosheet, T2 and T3 platforms and synthetic

antibody mimics.

1.10.1 Peptoid nanosheet

Peptoid or poly-N-substituted glycines, are a class of peptidomimetics molecules. When

synthesized with a periodic amphiphilicity sequence and dissolved into aqueous solution the

peptoids self assemble into a nanometer scale thin sheet (Nam et al., 2010). Taking advan-

tage of the protein-like folding, Olivier et al. used to peptoid nanosheet structure presenting

peptide sequence in a similar arrangement than encountered in the Ab (Figure 1.6A). Peptoid

nanosheet are made from protease-resistant molecules that are capable of self-assembly into a

stable sheet form. Peptides located on the sheet were shown to be accessible by enzymes and

when the gold-binding peptide (Kulp et al., 2004) was used the peptoid nanosheet was shown

to bind to the surface of the sheet using atom force microscopy.

1.10.2 T2 and T3 platforms

Timmerman et al. used two synthetic platforms they call T2 (α, α-dibromoxylene) and T3

(2,4,6-tris(bromo-methyl)mesitylene) on which peptide can be displayed. The T2 and T3

are linked to the peptide with cystein (Figure 1.6B). Using the specific Ab against gastrin17

the authors observed binding of the construct through screening of microarrays. Most of the

successful sequences were derived from the CDRs sequence and obtained a binding with a
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Kd in the micromolar range (100 µM ).

1.10.3 SyAM, Synthetic Antibody Mimics

In 2013, McEnaney et al. designed and produced a Synthetic Antibody Mimics Protate cancer

specific (SyAM-Ps) able to target prostate cancer cell (Figure 1.6C). This scaffold possess four

arms, two on which are displayed the prostate cells binding region and other two at the end

of which is found the immunoglobulin G receptor type I binding domain. While most of the

binding molecules we saw that far lack the capacity to bind to Fc gamma receptor I (FcγRi),

the SyAM possess two regions displaying FcγRi binding region allowing initiation of pro-

inflammatory responses. SyAM-Ps offers various possibilities for future cancer treatment

capable of recognizing specific cells and marking them for destruction.
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Fig. 1.6: (A) Architecture of an anti-canine lymphoma IgG2 antibody (PDB code: 1IGT).
Antibody-mimetic loops displayed on a peptoid nanosheet scaffold (Olivier et al., 2013).
(B) monocyclic, bicyclic, and tricyclic peptidomimetics are depicted together with molec-
ular details for the scaffolds (T2 and T3) used in chemical linkage of peptides onto Scaffolds
methodology (Timmerman et al., 2009). (C) Schematic illustration of the evolution of SyAM-
Ps design from a monoclonal antibody template. Schematic depiction of SyAM-Ps proposed
mechanism of action. Docking of SyAM-P into prostate-specific membrane antigen binding
pocket and Fc gamma receptor I binding surface to determine the linker length needed to
template a ternary complex (McEnaney et al., 2014).
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CHAPTER 2

Objectives

General Objectives

The objective of this work is to gain insight about Antibody-Antigen interface properties in

order to computationally generate peptide ligands.

Specific Objectives

1. To obtain a set of curated antigen-antibody structures.

2. To extract automatically epitope and paratope from interfaces using different selection

method.

3. To design a database able to store efficiently all the data from the antibody-antigen

interfaces along with a web interface.

4. To develop a methodology able to predict if a pair of epitope-paratope is mismatched

or not.

5. To use computed molecular interaction between epitope and paratope to compare dif-

ferent interface selection methods.

6. To extract pattern from Paratope-Epitope using graphs.

7. To develop a program to computationally generate peptide ligands libraries.
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8. To compare the interface properties recognized by specie-specific antibodies.

9. To predict the propensity of an epitope to be recognized by different antibody species

and assess which properties give the best prediction.
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CHAPTER 3

Epitope-Paratope Interface Database and
webserver

The rapid increase in Antibody-Antigen(Ab-Ag) complexes available in the Protein Data-

Bank (PDB, Berman et al. 2000) has led to the emergence of related databases helping to

efficiently retrieve and analyze crystal Ab-Ag complex structures. The ImmunoGlobulin

database (IMGT, Lefranc 1998) contains more than 4000 annotated structures of Antibod-

ies. More recently, the Structural Antibody Database (SAbDab, Dunbar et al. 2014) focus on

Complementary Determining Regions (CDR) sequence as well as maintaining a clustering of

the different antibodies and contains more than 2000 references. In order gain insight into

the Ab-Ag interface and help overpass the antibody’s production limitation, we conducted

a series of analysis based on physicochemical and structural properties of epitope-paratope

interfaces. For this purpose we created several bioinformatics tools and a database with a web

interface named Epitope-Paratope Interface DataBase (EPI-DB).

3.1 Interface Research Algorithm

In order to extract structures of antibody complexed with proteic antigen from the PDB we

first used the dataset from Ramaraj et al. and Kunik et al. and selected Light and Heavy

chain from the Ab to be used as reference sequences. Following redundancy removal from

those two reference sets using CD-Hit (Fu et al., 2012a) with a cutoff of 0.9, we used a

BioJava program we developed called Interface Research Algorithm (IRA, Figure 3.1). IRA
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automatically computes a Smith and Waterman (Smith et al., 1981) local alignment of each

of the reference sequences against each of the chains of all PDB files containing at least three

chains. Using a threshold determined by aligning the reference set against itself, IRA labeled

each chain as Ab Light, Ab Heavy or antigen. IRA selected PDB files that contain at least one

antigen, one light chain and one heavy chain spatially close (using 5 Angstrom distance cutoff

contacts). From those, were only selected the structures with a X-Ray resolution inferior or

equal to 3Å . The files were checked to make sure that if the CDR were synthetic constructs

they were done from the respective specie library. The antigen with a length inferior to 30

amino-acids was considered as peptide, bigger Ag as protein.

28



Reference Set of Light 
and Heavy Chains 
sequences.
From Ramaraj et al. 
and Kunik et al.

IRA : 
Interface Research 

Algorithm

● Compute Local 
alignment of all the 
PDB chain against all 
the reference 
sequences

● Label each chain as : 
● Light chain
● Heavy chain
● Antigen chain

● Select one Ab (L and 
H) per structure.

● Assess Ag presence 
or absence

Input Output

Complex 
structures
714 - Antibody 
complexed with 
Antigen

Fig. 3.1: Interface Research Algorithm methodology to extract antibody antigen complexed struc-
tures. IRA takes as input the Protein Data Bank and two sets of references sequences, one for light
chain and one for heavy. One by one IRA determines if the structure contains heavy, light and non-
antibody chain. The output gives the list of PDB files that contain at least one heavy, one light and one
non-antibody chain.
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3.2 Interface selection

To analyze the interface of Ab-Ag complexes, we used three different interface selection

methods. First a selection based on the distance between atoms of the antigen and the anti-

body (Distance-Based Selection, DBS, (Figure 3.2A) as used by Chothia and Janin (1975);

Lo Conte et al. (1999). An amino acid of the antigen is considered to be part of the distance

selected epitope, if at least one of its atom is at a distance below a chosen cutoff. The paratope

selection is done in the same manner. We computed DBS epitope and paratope with the fol-

lowing cutoff: 3.0, 3.5, 3.8, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5 and 8.0 Ångström (Å). Second,

we used an approach based on the difference of Solvent Accessible Surface (∆SAS, Figure

3.2B), interfaces are selected based on the loss of solvent accessibility between the split and

the complexed protein (Lo Conte et al., 1999). For this selection were computed the following

cutoffs: 70, 60, 50, 40, 30, 20, 15, 10, 5 and 0+Å
2

(0+ meaning SAS loss is not null). Third,

we developed a selection method in which the interface computed molecular interactions are

extracted from STING RDB (Neshich et al., 2006). In this method, the interface is defined

by all the amino acids that are involved in the molecular interactions between the antigen and

the antibody chains and that are called, therefore, Interface Interacting Residues (I2R, Figure

3.2C). The selected antibody residues form the I2R Paratope and the selected antigen amino

acids constitute the I2R Epitope. This methodology has no direct cutoff since it relies on com-

puted interactions. We took as example the pheasant egg white lysozyme antigen-antibody

complex structure (1JHL) to image the differences in residue selection. Using the DBS with

5Å cutoff for the epitope, 15 amino acids are selected while only 9 residues compose the I2R

epitope. The biggest epitope is obtained using the ∆SAS with 0+Å
2

(0+ cutoff constituted of

18 residues. The biggest difference is observed for the paratope where the ∆SAS selects all

of the center of the antibody (55 residues) while I2R and DBS only select 17 and 12 residues

respectively.
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Paratope Epitope
Distance Based Selection (DBS)

5ÅA

B

Difference of Solvent Accessible Surface (ΔSAS)
0+ Å²

C

Interface Interacting Residues

Fig. 3.2: Pheasant egg white lysozyme antigen-antibody complex structure (1JHL) paratope (left
side) and epitope (right side) using different selection techniques. Residues selected for the antibody
appear in green while residues selected from the antigen appear in red. A Distance based selection
with a 5Å cutoff. B Selection based on loss of solvent accessible surface with cutoff of 0+Å

2
(loss is

not null). C Interface Interacting Residue selection based on computed molecular interactions
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3.3 Dataset description and redundancy removal

Using IRA we extracted 714 Antibody-Antigen (Ab-Ag) complex structures from the PDB

(Berman et al., 2000). After removing the files that didn’t correspond to our criteria of reso-

lution and origin, we manually curated the remaining PDB files to make sure of their quality

leading to the base redundant dataset that was inserted into our database, EPI-DB, currently

composed by 543 PDBs. Due to different methods of selection and cutoffs we have 12025

pairs of paratope-epitope. We defined a ’pair’ as the epitope and paratope obtained from a

given structure using the same selection method and the same cutoff. From these, 6504 were

obtained by Distance Based Selection (DBS), 5420 from difference of solvent accessibility

surface (∆SAS). Interface Interacting Residues were only added for the non redundant dataset

resulting in 101 pairs of epitope-paratope. Some pairs were removed because the selection

method and cutoff did not select any residues for one or the other side of the interface. Each

epitope has 44 properties as does the paratope. We can see in the table 3.2 that most antibodies

are from mice (316) and Humans(203).

To extract meaningful information from the interface dataset, we removed redundancies by

selecting only the DSE and DSP sequences from the complex with a cutoff of 6Å. Using the

CD-Hit global sequence identity score (Fu et al., 2012b), we only selected interfaces with a

score lower than 0.90 for both interface sides. Global sequence identity score is defined as the

number of identical amino acids in alignment divided by the length of the shorter sequence.

The selected files were manually curated to confirm their quality. This provided us with a

non-redundant dataset composed of 101 PDB structures (corresponding to the I2R) (Tables

3.1 ).
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Table 3.1: Non-redundant dataset detail, Part 1
PDB Light Chain Heavy Chain Antigen Chain Resolution Ab Specie
1H0D A B C 2 Human
1N0X L H P 1.8 Human
1RZJ L H G 2.2 Human
1TJI L H P 2.2 Human
1W72 L H ACD 2.15 Human
2B0S L H P 2.3 Human
2CMR L H A 2 Human
2DD8 L H S 2.3 Human
2FX7 L H P 1.76 Human
2H9G A B R 2.32 Human
2NY7 L H G 2.3 Human
2QQN L H A 2.2 Human
2R0L L H A 2.2 Human
2UZI L H R 2 Human
2VXQ L H A 1.9 Human
2XRA L H A 2.3 Human
2XWT B A C 1.9 Human
3BN9 C D B 2.17 Human
3D85 A B C 1.9 Human
3GBN L H AB 2.2 Human
3GJF L H ACE 1.9 Human
3GRW L H A 2.1 Human
3H0T A B C 1.89 Human
3H42 L H AB 2.3 Human
3HI6 L H A 2.3 Human
3IDX L H G 2.5 Human
3K2U L H A 2.35 Human
3KR3 L H D 2.2 Human
3L95 A B X 2.19 Human
3LEV L H A 2.5 Human
3MA9 L H A 2.05 Human
3MAC L H A 2.5 Human
3MLR L H P 1.8 Human
3MLT L H P 2.49 Human
3MLX L H P 1.9 Human
3MLY L H P 1.7 Human
3MXW L H A 1.83 Human
3NPS C B A 1.5 Human
3P0Y L H A 1.8 Human
3PGF L H A 2.1 Human
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PDB Light Chain Heavy Chain Antigen Chain Resolution Ab Specie
3Q1S L H I 2.15 Human
3RU8 L H X 2.07 Human
3SE8 L H G 1.9 Human
3SE9 L H G 2 Human
3SKJ L H E 2.5 Human
3SOB L H B 1.9 Human
3THM L H F 2.1 Human
3TJE L H F 1.93 Human
3U30 B C A 2.43 Human
3U7Y L H G 2.45 Human
3UJI L H P 1.6 Human
3UJJ L H P 2 Human
4AL8 L H C 1.66 Human
4D9R L H A 2.42 Human
4DGV L H A 1.8 Human
4DTG L H K 1.8 Human
1A3R L H P 2.1 Mouse
1BGX L H T 2.3 Mouse
1EJO L H P 2.3 Mouse
1FE8 L H AC 2.03 Mouse
1FNS L H A 2 Mouse
1JHL L H A 2.4 Mouse
1KB5 L H AB 2.5 Mouse
1N64 L H P 2.34 Mouse
1NBY A B C 1.8 Mouse
1NCA L H N 2.5 Mouse
1NDG A B C 1.9 Mouse
1ORS A B C 1.9 Mouse
1OSP L H O 1.95 Mouse
1P2C A B CF 2 Mouse
1QKZ L H AP 1.95 Mouse
1SY6 L H A 2.1 Mouse
1TET L H P 2.3 Mouse
1UWX K M BQ 2.2 Mouse
1VFB A B C 1.8 Mouse
1WEJ L H F 1.8 Mouse
1YQV L H Y 1.7 Mouse
1ZTX L H E 2.5 Mouse
2ADF L H A 1.9 Mouse
2AEP L H A 2.1 Mouse
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PDB Light Chain Heavy Chain Antigen Chain Resolution Ab Specie
2B2X L H A 2.2 Mouse
2CK0 L H P 2.2 Mouse
2DQF A B CF 2.5 Mouse
2J4W L H D 2.5 Mouse
2JEL L H P 2.5 Mouse
2QHR L H P 2 Mouse
2VXT L H I 1.49 Mouse
2XQY K J E 2.05 Mouse
2Y5T B A EFG 2.2 Mouse
3FFD B A P 2 Mouse
3G5Y A B E 1.59 Mouse
3GI9 L H C 2.48 Mouse
3HB3 D C B 2.25 Mouse
3LIZ L H A 1.8 Mouse
3O2D L H A 2.19 Mouse
3O6L L H C 2.1 Mouse
3QWO L H P 1.9 Mouse
3RKD L H A 1.9 Mouse
3RVV C D A 1.9 Mouse
4AEI L H AB 2.3 Mouse
4ETQ L H C 2.1 Mouse

Table 3.2: EPI-DB general statistics
PDB 543 paratope epitope
Selection method DBS 6504 6504

∆SAS 5420 5420
I2R 101 101

Total 12025 12025
Organism Mouse 316

Human 203
Others 24
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3.4 Epitope Paratope Database, EPI-DB

Epitope Paratope Database (EPI-DB) was implemented in MySQL and specifically designed

to store antibody-antigen structures extracted from the Protein DataBank (Berman et al.,

2000), antigen and antibody description and sequence, paratope and epitope selected using

various methodologies and cutoffs, physicochemical and structural properties (Figure 3.4).

Seven tables compose the core of the EPI-DB (Figure 3.3). The PDB table stores informa-

tion related to the PDB file, such as the PDB identifier, experiment type, resolution, number

of chains, antibody and antigens chain-ids and date of the submission. More detailed infor-

mation about each antigens and antibodies chain can be found in the proteins table. This

includes number and sequence of amino acids, protein-name, Swissprot-id, expression sys-

tem. . . Antigens and antibodies tables are aggregations of the protein table defining for each

PDB the antigen(s) chain and the antibody(ies) chain. Epitopes and Paratopes tables store the

information about the interface, including the sequences and position of the residues, the se-

lection method and cutoff used to determine them. Physicochemical and structural properties

for each of the epitope and paratope are stored in the Properties tables and detailed in the table

3.3. Physicochemical descriptors were computed using a perl script combining tools from the

ExPASy platform as ProtParam and pI/Mw (Gasteiger et al., 2005) while structural ones were

obtained using Stride (Heinig and Frishman, 2004).

This data is used to better understand the relationship between pairs, defined as a paratope and

the corresponding epitope both selected from the same PDB using the same selection method

and cutoff. In total, there are 12.025 pairs available and therefore 1.058.200 properties values

calculated from sequences of epitope and paratope. The EPI-DB also offers expansion to

accommodate data from literature associated to Ab-Ag complexes and epitopes derived from

other proteins as well as the experimental data to determine epitope.
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Fig. 3.3: Epitope-Paratope Database core design. Each full line square represents one of the central
table of EPI-DB. PDB complexes contains information about the PDB file that references antibody-
antigen structure. Protein table list all the chains of the PDB and store details like sequence, name and
other databases references like Swissprot. Antigen and antibody table are aggregation of the protein
table defining for each PDB the antigen(s) chain and the antibody(ies) chain. Epitope and paratope
correspond to the sequence obtained using a given selection method and cutoff on an antigen and an
antibody. Properties store the results of the 44 descriptors computed for each epitope and paratope.
The properties can be divided into two groups, structural and physicochemical.
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antibodies

id INT(10)

light_chain_id VARCHAR(1)

heavy_chain_id VARCHAR(1)

light_chain_sequence VARCHAR(400)

heavy_chain_sequence VARCHAR(400)

properties_id INT(10)

type VARCHAR(50)

comments VARCHAR(500)

protein_data_banks_id VARCHAR(4)

Indexes

antigens

id INT(10)

protein_id_first INT(10)

protein_id_second INT(10)

protein_id_third INT(10)

protein_id_fourth INT(10)

properties_id INT(10)

name VARCHAR(50)

type VARCHAR(100)

2 more...

Indexes

articles

id INT(10)

reference INT(10)

journal_id INT(10)

journal_volume VARCHAR(15)

journal_issue VARCHAR(20)

date VARCHAR(35)

pages VARCHAR(25)

title VARCHAR(500)

authors VARCHAR(500)

abstract VARCHAR(4000)

affiliations VARCHAR(2000)

chemical_list VARCHAR(500)

mesh_headings_list VARCHAR(500)

medline_date DATE

comments VARCHAR(500)

Indexes

epitope_has_articles

id INT(10)

epitopes_id INT(10)

article_id INT(10)

Indexes

epitope_has_experimental_det…

id INT(10)

epitopes_id INT(10)

experiemental_determinations_id INT(10)

Indexes

epitopes

id INT(10)

antigens_id INT(10)

properties_id INT(10)

selection_method VARCHAR(200)

sequence VARCHAR(100)

position VARCHAR(500)

type VARCHAR(50)

comments VARCHAR(500)

protein_data_banks_id VARCHAR(4)

cutoff DOUBLE(5,3)

Indexes

experimental_determinations

id INT(10)

map_method VARCHAR(500)

ag_immunogen VARCHAR(500)

epi_detection VARCHAR(500)

Indexes

paratopes

id INT(10)

selection_method VARCHAR(200)

light_chain_sequence VARCHAR(100)

heavy_chain_sequence VARCHAR(100)

light_chain_position VARCHAR(200)

heavy_chain_position VARCHAR(200)

type VARCHAR(50)

comments VARCHAR(500)

antibodies_id INT(10)

properties_id INT(10)

cutoff DOUBLE(5,3)

protein_data_banks_id VARCHAR(4)

Indexes

properties

id INT(10)

number_of_amino_acids INT(5)

isoeletric_point FLOAT

percentage_negative_charged_de FLOAT

percentage_positive_charged_rhk FLOAT

percentage_polar_uncharged_sqtn FLOAT

percentage_special_cgp FLOAT

percentage_hydrophobic_avilmfyw FLOAT

molecular_weight FLOAT

gravy FLOAT

aliphatic_index FLOAT

percentage_carbon FLOAT

37 more...

protein_data_banks

id VARCHAR(4)

number_chains INT(10)

pdb_file_path VARCHAR(50)

experiment_type VARCHAR(30)

resolution FLOAT

antibody_chain VARCHAR(10)

4 more...

proteins

id INT(10)

chain VARCHAR(1)

length INT(10)

sequence VARCHAR(3000)

protein_name VARCHAR(50)

keywords VARCHAR(50)

engineered VARCHAR(50)

swiss_prot VARCHAR(10)

gi VARCHAR(10)

pfam VARCHAR(10)

go_terms VARCHAR(50)

po_terms VARCHAR(50)

expression_system VARCHAR(50)

protein_data_banks_id INT(10)

protein_type VARCHAR(100)

Indexes

proteins_has_articles

id INT(10)

proteins_id INT(10)

articles_id INT(10)

Indexes

species

id INT(10)

specie_scientific_name VARCHAR(50)

taxonomy VARCHAR(50)

common_name VARCHAR(20)

Indexes

species_has_proteins

id INT(10)

species_id INT(10)

proteins_id INT(10)

Indexes

Fig. 3.4: Epitope-Paratope interface database layout.
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Table 3.3: Physicochemical properties detail
Property Description

Number of amino acids Amino acids count
Isoeletric point Estimative value for Isoelectric Point.∗

GRAVY The grand average of hydropathy
is the sum of hydropathy values of all the amino acids,
divided by the number of residues in the sequence. ∗

Aliphatic index Relative volume occupied by aliphatic side chains.∗

Molecular weight Molecular Weight computed pI/Mw ∗

Accessibility Solvent accessible surface when complexed ∗∗

Accessibility split Solvent accessible surface when not complexed ∗∗

α-helix Percentage of Alpha Helix ∗∗

3-10 helix Percentage of 3-10 Helix ∗∗

π-helix Percentage of π-Helix ∗∗

Extended conformation Percentage of Extended Conformation ∗∗

Isolated bridge Percentage of Isolated Bridge ∗∗

Turn Percentage of Turn ∗∗

Coil Percentage of Coil ∗∗

Negative charged Percentage of all negative charged residues (D, E)
Positive charged Percentage of all positive charged residues (H,K,R)
Polar Uncharged Percentage of all polar and uncharged residues

(G, S, T, C, Y, N, Q)
Special(CGP) Percentage of Special residues (C,G and P)
Hydrophobics Percentage of Hydrophobic Amino Acids

( G, A, V, L, I, P, F, M and W )
Atomic proportion Percentage of Carbon, Oxigen, Nitrogen, Hydrogen

and Sulfur(Contains 5 properties).∗

Percentage of each amino acids Amino acid composition of a protein sequence
(Contains 20 Properties).∗

∗ ExPASy platform tools ProtParam and pI/Mw (Gasteiger et al., 2005).
∗∗ Structural properties were computed using Stride (Heinig and Frishman, 2004).
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3.5 Web interface for EPI-DB

Once the EPI-DB was filled with the data previously described, a web interface was imple-

mented in order to deal with data visualization and retrieval (Figure 3.5) and was created using

a framework based in HTML and PHP. The interface allows to download the full database in

MySQL for the users willing to implement it locally. The Data tab allows the user to parse

directly from the browser the data but only table by table for now. The site also contains basic

statistics of the database to keep track of its evolution.

3.6 Epitope and paratope properties hierarchical clustering

analysis

As a first analysis, we investigated the relations between the properties of the paratope and the

epitope using clustering methodology. This analysis assessed the capacity of the properties

to become potential predictors. From our database we extracted the 101 pairs of paratope-

epitope properties corresponding to the I2R selection method. We made a hierarchical clus-

tering of the epitope-paratope properties. Zero-variance properties were filtered out, removing

7 properties and leaving only 37 for this analysis. With these properties we created a square

matrix with the absolute Pearson correlations of all paratope properties against all epitope

properties. This computation was performed with “cor“ build-in function of R (Becker et al.,

1988). This correlation matrix was clustered with the function ”pvclust“ of the package ”pv-

clust“ (Suzuki and Shimodaira, 2006). We performed 2000 bootstraps and used distance based

on absolute correlation. We highlighted clusters with more than 95% unbiased probability and

0.7 of absolute correlation.

The cross correlation analysis between the epitope and paratope parameters forms 6 strongly

related cluster of parameters, with an R-value above 0.7 (Figure 3.6). Most of those clusters
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are expected in term of parameters, such as Met with Sulfur percentage or aliphatic index

with GRAVY. We can also observe the two very close clusters (number 3 and 4) representing

negative and positive charged residues respectively. It is important to note that the Lys and

His are not part of the positive charged cluster. A surprising aggregation is the presence of

the Iso-electric Point (IP) parameter within the positive charge cluster showing that the IP

is more related to the positive charged than the negative ones. Concerning the secondary

structures parameters we can see the combination of the extended conformation with the turn

percentage proving that the structure of the epitope influences the structure of the paratope

and vice versa. Considering the cluster Tyr, very important residue for the paratope, we can

note the high correlation with the percentage of Coil, therefore linking the most important

amino acid of the paratope with secondary structure.
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Fig. 3.6: Clustering of epitope and paratope based on absolute correlation. We highlighted clusters
with more then 95% unbiased probability and 0.7 of absolute correlation (green square).
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3.7 Assessing rightful and mismatched pairs of paratope-

epitope based on epitope properties

As shown by the previous results some properties from paratope are correlated with epitope’s

properties. To analyze more deeply the relation between the properties we used linear model

for all the epitope properties to predict a specific paratope property and then combined those

linear models to form ’ensemble’ able to predict all paratope properties. The objective of this

computational methodology is to be able to discriminate a rightful pair of paratope-epitope

from a mismatched one. A pair of epitope-paratope being the sequences from the antigen

and antibody respectively obtained from an Ab-Ag complex structure using a given selection

method and cutoff.

Prediction of a single property using linear model

Linear models were created with the “GLM” R-package using Gaussian family (Dobson,

1990; Hastie and Pregibon, 1992; McCullagh and Nelder, 1989; Venables and Ripley, 2002).

Each model was build adding properties one by one and evaluating the change in correla-

tion between predictions and real values. If the new property increased the correlation by at

least 0.02, the attribute was accepted or removed from the model. Properties were added in

decreasing order of correlation.

Creation of ensemble of linear models for multiple properties prediction

Ensembles of models were created the following way: each linear model made a prediction,

this prediction was compared with real value and a z-score was calculated by taking the abso-

lute difference between predicted and the real values and dividing by the y-standard deviation

of the prediction. After calculating the z-score for every model we summed them result-
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ing in the final prediction value. Only linear models with a certain threshold of correlation

were added to the ensemble. In order to test the ranking ability of the ensemble of models

we created a set of correct paratope-epitope pairs along with a set of mismatched pairs. We

attempted to predict if each epitope was paired to it’s corresponding paratope based on the

sum-z-score. Pairs (correct and mismatched) were sorted by this score and Area Under the

roc-Curve (AUC) was calculated with the function “roc.area” from the R-package “verifica-

tion” (Mason and Graham, 1982).

Evaluation of the models and ensembles prediction using double cross-validation

In order to have realistic, not over fitted measures of quality for the models we performed

a double cross-validation in which the dataset was first divided in 10 k-folds (outer) cross-

validation and in each k-fold was performed a leave-one-out (inner) cross-validation. The

inner cross-validation was used to build and evaluate the linear models. For each model

was repeated the leave-one-out 100 times using the bootstrapping method. The outer cross-

validation was used to evaluate the ranking ability of the ensemble, it’s training set was com-

posed of 91 instances (rows in the data-set) while the test sets contained 10. The 10 test

instances were taken from correct pair (positive data-set), which we shuffled to create another

10 instances of mismatched pairs (negative data-set). Area Under the Curve (AUC) evalua-

tion was performed for the 202 predictions. The minimum threshold of absolute correlation

required to be part of an ensemble was tested from 0.3 up to 0.6 with a step of 0.05 in or-

der to maximize AUC the of the prediction. The best ensemble was obtained using absolute

correlation cutoff of 0.5 (Figure 3.7) and reached an AUC of 0.6420.

The table 3.4 contains the detail of the properties used by the different models that constitute

the best ensemble ( cutoff 0.5). The prediction is done by an aggregation of five models that

predict the following paratope properties, number of residues, percentage of Trp, percent-

age of hydrogen, percentage of Asp and the molecular weight based on epitope properties.
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The models with the highest correlation correspond to the number of residues and molecular

weight which are two related properties and have low discrimination capacity. The percentage

of Trp and Asp are more discriminating properties but their correlation are lower.

Those results show the relative prediction capacity of sets of properties and allowed to quan-

tify the quality of prediction for each one of them. This type of methodology could be applied

to assess the binding likelihood of a Complementary Determining Regions to an epitope of

interest.
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Fig. 3.7: ROC curve of the three best ensemble of models. Each curve represent an ensemble of model
with a different minimum threshold for linear model to be part of it. The green curve correspond to
a 0.55 of absolute correlation threshold and reach and AUC of 0.5761. The red curve correspond to a
0.45 absolute correlation cutoff and obtain an AUC of 0.6332. The blue curve correspond to a cutoff
of 0.5 and reached the highest AUC with 0.6420.
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Table 3.4: Best ensemble of models properties detail

Predicted Paratope Properties
Epitope Properties N°Residues %Trp %Hydrogen % Asp MW
Molecular Weight
%Polar& Uncharged
% negative charged
% Iso
% Trp
% His
% Ser
% Cys
Isoeletric Point
% Leu
% Phe
% Tyr
Gravy
% Met
% Positive Charged
% Asp
% Val
% Hydrophobics
Aliphatic Index
correlation 0.58955 0.5220628 0.5138915 0.511735 0.5993296
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CHAPTER 4

EPI-Peptide Designer

Antibodies play an increasingly important role in both basic research and the pharmaceuti-

cal industry. Fully understanding the complementarity of epitope and paratope is of great

interest but still remains a challenge. Different bioinformatics methodologies are used to

gain insight into the molecular mechanisms such as in silico alanine scanning (Robin et al.,

2014), specialised antibody-antigen docking such as SnugDock (Sircar and Gray, 2010), ab

initio antibody contact residue prediction such as Antibody i-Patch (Krawczyk et al., 2013)

or statistics analysis from set of complex Ab-Ag crystal structure. Crystal structures analysis

have been very helpful to understand basics principles of complementarity but lack more com-

plex approaches. Using the previously constructed non-redundant dataset of Ab-Ag structure

and computed molecular interaction extracted from the BLUE STAR STING server (Neshich

et al., 2006) we developped a tool to represent the interface using graph format. From this

representation, using graph extraction and Bayesian probabilities, we implemented Epitope-

Paratope Interface (EPI) Peptide Designer, a new tool to generate peptide binder libraries

biased based on a target epitope sequence and the patterns extracted from the Ab-Ag inter-

faces. In order to prove predicted EPI-Peptide capacity to bind, we conducted an experimental

validation using LiD1 (GI: 33348850) (Felicori et al., 2006) sequence epitope as target. EPI-

PeptideDesigner successfully predicted 301 peptides able to bind to LiD1 protein (65% of

the experimentally tested peptides). The detailed methodology is described in the following

manuscript submitted to the Oxford Bioinformatics journal.
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ABSTRACT
Motivation:
Antibodies are an important class of biological drugs, but
with limitations, such as inadequate pharmacokinetics, adverse
immunogenicity and high production costs. Synthetic peptides with
high affinity and specificity for the desired target represent an
important alternative to antibodies. However, no computational tool
exists to guide the design of these peptides.
Results:
To identify the interacting residues in a given antibody-antigen
interface we used Interface Interacting Residue (I2R), a selection
method based on computed molecular interactions. The aggregation
of all the molecular interactions between epitope and paratope
residues allowed us to transform the 3D antibody-antigen complex
structures into interface graphs. Based on these data and the
probability of molecular interaction we developed EPI-Peptide
Designer tool that uses predicted paratope residues for an epitope
of interest to generate targeted peptide ligand libraries. EPI-Peptide
Designer successefully predicted 301 peptides able to bind to LiD1
target protein (65% of the experimentally tested peptides). This tool
should enable the development of a new generation of synthetic
interacting peptides that could be very useful in the biosensor,
diagnostic and therapeutic fields.
Availability:
All software developed in this work are available at
http://www.biocomp.icb.ufmg.br/biocomp/

Contact: liza@icb.ufmg.br

1 INTRODUCTION
Protein-protein interactions are at the heart of biological processes
and protein functions are highly related to their binding properties
(Chakrabarti and Janin, 2002). For instance, the immune response
relies on antigen recognition by a specific antibody and the
Antibody-Antigen (Ab-Ag) complex represents a specific type
of protein-protein interaction characterized by high affinity and

∗to whom correspondence should be addressed

specificity. Identifying the key residues and interaction patterns on
the Ab-Ag interface could help improving antibody humanization as
well as the design of new antibodies (Morea et al., 2000) and peptide
ligands based on the antibody properties.

The use of peptides for therapeutic purpose instead of antibodies
has plenty of advantages such as lower manufacturing costs,
less immunogenic profile, greater stability and better organ/tumor
penetration. Several chemical approaches have been generated
to overcome therapeutic peptides limitations such as low oral
bioavailability and biodistribution (Vlieghe et al., 2010). Indeed,
much research effort is focused on the use of peptide ligands as a
viable alternative to antibodies in targeted therapies (Wada, 2013).
For instance, mimetic peptides derived from the anti-HER2/ERBB
antibody can inhibit the tyrosine kinase activity of this receptor
and consequently impair tumour growth (Park et al., 2000; Ponde
et al., 2011). Presently, over 50 peptide drugs are approved for
clinical use (Reichert J., 2010). To guide the design and increase
the affinity and specificity of these peptide drugs, different tools,
based on various methodologies (e.g., directed evolution, high-
throughput protein screening or rational design based on protein-
peptide interactions) have emerged (Pei and Wavreille, 2007; Yin
et al., 2007; Vanhee et al., 2011). In silico rational design of peptides
based on molecular interactions is also a fundamental proof-of-
concept for the current understanding of the physical-chemical basis
of molecular recognition. Moreover, this approach could become
a powerful complement to the current library-based screening
methods because it allows targeting specific patches on the surface
of a protein (Fleishman et al., 2011). Computational design
also gives the opportunity to program protein-protein interactions
for specific applications. However, currently no computational
methodology to design this kind of peptides is available.

In this work, we propose a computational method to generate
libraries of peptide ligands or paratope mimetics based on the
Epitope-Paratope Interaction (EPI) patterns and on a target epitope
input sequence. This software, called EPI-Peptide Designer, uses
a set of Ab-Ag complex structures from the Protein Data Bank
(PDB) (Berman et al., 2000) and the BlueStar STING server
and STING DB (Neshich et al., 2006) containing hundreds of
interaction descriptors reported in residue by residue fashion

c© Oxford University Press 2015. 1
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to compute the Bayesian probabilities of molecular interactions
between epitope and paratope. EPI-Peptide Designer generates
peptide binder sequences based on the epitope sequence entered
by the user and the patterns extracted from the Ab-Ag interfaces.
The method was experimentally validated using as target a
dermonecrotic protein LiD1 from the brown spider venom. We have
synthesized a library of 460 peptides and 65% of them were able
to bind to LiD1. This is, to our knowledge, the first generator of
peptide ligand libraries based on EPI.

2 METHODS
Dataset extraction
To extract structures of Ab-Ag complexes from the PDB (Berman
et al., 2000), we first used the datasets from Ramaraj et al. and Kunik
et al. to select the antibody light and heavy chains to be used as
reference sequences. After redundancy removal using CD-Hit (Fu
et al., 2012), we processed the two reference sequence datasets
with Interface Research Algorithm (IRA), a BioJava program we
developed. IRA automatically computed the Smith and Waterman
local alignment (Smith et al., 1981) of each sequence against each
chain of all the PDB files that contain at least three protein chains.
Using a threshold determined by aligning the reference dataset
against itself, IRA labelled each chain as Antibody Light, Antibody
Heavy or Antigen. IRA selected structures that contain at least one
antigen, one light chain and one heavy chain spatially close (i.e.,
presenting inter-atomic contacts using the 5 Ångström (Å) distance
cutoff). From these, the PDB files with X-ray resolution lower or
equal to 2.5Å and present in STING RDB were extracted (Neshich
et al., 2006).

Interface selection
To analyse the interface of Ab-Ag complexes, we used three
different interface selection methods. First, in the selection based
on the distance between atoms of the antigen and the antibody
(distance-based selection, DBS) (Chothia and Janin, 1975; Lo Conte
et al., 1999), an amino acid of the antigen is considered to be part
of the Distance Selected Epitope (DSE), if one or more of its atoms
are at a distance below a chosen cutoff (in our study, from 3 to 8
Ångström). The Distance Selected Paratope (DSP) is selected in the
same manner. Second, in the approach based on the difference of
Solvent Accessible Surface (∆SAS), interfaces are selected based
on the loss of solvent accessibility between the separated and the
complexed protein (Lo Conte et al., 1999). Third, we developed
a selection method in which the interface computed molecular
interactions are extracted from STING RDB (Neshich et al., 2006).
In this method, the interface is defined by all the amino acids
that are involved in the molecular interactions between the antigen
and the antibody chains and that are called, therefore, Interface
Interacting Residues (I2R). The selected antibody residues form the
I2R Paratope and the selected antigen amino acids constitute the I2R
Epitope.

Computation of the interface molecular interactions
Molecular interactions (salt bridges, hydrogen bonds, aromatic
stacking and hydrophobic interactions) were taken from STING
RDB IFR (Mancini et al., 2004). This tool identifies all potential
intra- and inter-protein chain contacts stored in STING RDB
(Neshich et al., 2006) by (1) classifying the atoms in groups

according to their electrostatic behaviour and position in the amino
acid (main or side chain) and (2) by then selecting atoms based
on the type of contacts they potentially can make and on the
experimentally defined distance restrictions (Harris and Mildvan,
1999; Sobolev et al., 1999; Swindells, 1995).

Redundancy removal
To extract meaningful information from the interface dataset,
we removed redundancies by selecting only the DSE and DSP
sequences from the complex (with a cutoff of 6Å). Using the CD-
Hit global sequence identity score (Fu et al., 2012), we only selected
interfaces with a score lower than 0.90 for both interface sides.
Global sequence identity score is define as the number of identical
amino acids in alignment divided by the length of the shorter
sequence. The selected files were manually curated to confirm their
quality. This provided us with a non-redundant dataset composed of
101 PDB structures, 21 antibody-peptide complexes (here, peptides
are defined as molecules smaller than 30 amino acids) and 80
antibody-protein complex.

Interface statistical analysis
To compute the percentage of occurrence (%Occ) of the epitopes
and paratopes selected by I2R we used :

%Occn =
Occn
Occtotal

× 100,

where n is an amino acids, %Occn is the percentage of occurrence
of n, Occn is the occurrence of n and Occtotal is the occurrence
of all the residues. The results were compared to all STING RDB
protein-protein interaction (Neshich et al., 2006) occurrence values
after exclusion of our 101 PDB Files. The statistical comparison of
the amino acids was done using a t-test of differential distribution
and was considered significant when the p-value was lower than
0.01.

Comparison of the interface selection methods
To compare the interface residue selection by the three methods
we computed the Receiver Operating Prime Curve (ROC’) of the
performance of the distance-based selection and ∆SAS, using
various cutoffs, against I2R. As the aim was the comparison of
selected interface residues, the true negatives were not considered.
We computed the ROC’ curve as follows. The True Positive Rate
(TPR), also called recall, was computed as:

TPR =
TP

TP + FN

and the False Discovery Rate (FDR) as:

FDR =
FP

FP + TP

where TP is the True Positive, FP the False Positive and FN the
False Negative.

Computation of the most frequent interface partners using
graph analysis
To analyse the interface in a multi-level manner, we developed
Interface to Graph Generator (IGG). IGG is a BioJava program
that takes as input PDB codes and two sets of chains. Molecular
interactions between those two sets are recovered from PDB
structures using STING RDB (Neshich et al., 2006). The interface is
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automatically transformed into a graph, where all I2Rs are vertices
and all interactions are edges. The vertex label holds the information
concerning the interface side and the amino acid type (Table 1).
The edges are labelled according to the type of interaction, such
as hydrogen bonds, salt bridges, hydrophobic interactions and
aromatic stacking. Using GASTON (Nijssen and Kok, 2004), we
extracted the most conserved sub-graphs from the complete set
of interfaces containing two and three nodes. Subgraphs plot was
done using R (R Development Core Team, 2008) and the “igraph”
package (Csardi and Nepusz, 2006).

Table 1. Amino acids group used for graph and subgraphs analysis

Group Residue

Small A,G
Charged + K,R,H
Charged - D,E
Hydrophobic V,I,L,C,M,P
Alcohol S,T
Aromatic Y,W,F
Polar Q,N

Assessment of paratope residue prediction
Based on the Bayesian probabilities extracted from the epitope-
paratope graphs, we predicted the amino acid sequence and the
interaction of a given paratope using a given epitope sequence.
To evaluate the prediction of residues and interactions, we used
a leave-one-out cross validation of the 21 antibody-peptide PDB
interfaces from our dataset. Antigens were considered as peptides if
their size was equal or lower than 30 amino acids. The evaluation
considered each residue from the input epitope and defined as
True Positive (TP) a correct ”interaction type and paratope residue”
couple, as False Positive (FP) any interaction where the interaction
type or the residue group was incorrect, as False Negative (FN) any
existing couple not added by the program and as True Negative (TN)
any possible not existing and not added interaction type-paratope
residue couple.

EPI-Peptide Design tool
Using all the Ab-Ag interaction patterns and the residue occurrence
data obtained in this study, we developed EPI-Peptide Designer in
BioJava. EPI-Peptide Designer includes the IGG program described
above. The program takes as input a real or putative epitope
sequence (linear or conformational; gaps in the sequence can be
represented by - ), a cutoff score representing the importance
of the epitope sequence in the design and the number and size
of peptides needed by the user. To design peptide ligands, EPI-
Peptide Designer uses the Base Residue Library (BRL) composed
of all residues from all the paratopes in the input dataset. The
computed probabilities include: probability of an epitope residue
type to do an interaction and, for each type of interaction, the
probability of the target paratope residue type and the influence
of the epitope neighbour residues on the interaction. Using these
probabilities and the input sequence, EPI-Peptide Designer ranks
the predicted paratope residues in decreasing order of likelihood.
The paratope residues are then added according to the decreasing

order of likelihood to the BRL until the defined cutoff score is
reached (i.e., for a BRL of 100 residues and a cutoff score of 10%,
EPI-Peptide Designer will add 10 residues to the BRL). The thus
obtained biased amino acid library (i.e., modified to become specific
for a given epitope sequence) is then used to generate random EPI-
peptide sequences of the length and in the number defined by the
user.

EPI-peptide design, peptide synthesis on cellulose membranes
and binding assay
In order to test the effectiveness of the method, we generated 800
EPI-Peptides using the protein LiD1 (GI: 33348850, Felicori et
al., 2006) catalytic sequence epitope (37FDDNANPEYTYHGIP51)
and default parameter of EPI-Peptide Designer (Ab-peptide dataset,
length of 15 amino acid and a score of 50). To ensure solubility, only
sequences which contained less than 50% hydrophobic residues;
at least 25% of charged residues and less than 75% of D, E, H,
K, N, Q, R, S, T and Y were selected and synthesized (Following
recommandations from Life technologies peptide solubility website,
http://www.lifetechnologies.com). Four hundred and sixty peptides
were synthetized on a cellulose membrane as previously described
by Laune et al. The membrane was blocked by incubation
with 3% BSA and 5% sacarose at room temperature overnight,
and then membranes were probed LiD1 covalently linked to
biotin at a concentration of 20µg/ml in blocking buffer at room
temperature for 90 min. Biotinalytion of LiD1 was conducted using
commercial available Biotinylation kit (Sigma-Aldrich, BK101).
Protein binding was revealed by incubation (at room temperature
for 90 min) with alkaline phosphatase-conjugated avidin (1:10,000)
and 5-bromo-4-chloro-3-indolyl phosphate (BCIP) plus 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as
substrate. To remove molecules and precipitated blue die attached,
membranes were sequentially treated with dimethylformamide, 1%
SDS, 0.1% 2-mercaptoethanol in 8 M urea, ethanol/water/acetic
acid (50:40:10, vol/vol/vol) and, finally, methanol and further
employed in other assays. Peptide reactivity was assessed based
on manual reading and consensus of triplicate assays. Positive
sequences were analysed by GibbsCluster (Andreatta et al., 2013)
and Weblogo (Crooks et al., 2004) tools.

3 RESULTS

Analysis of the Interface Interacting Residues (I2R) allows
evaluating the distance-based selection and the difference of
solvent-accessible surface methods
To compare the three interface residue selection techniques, we
selected interfaces from the 101 PDB structures by computing the
Euclidean distance DBS, the ∆SAS and the interface molecular
interactions (I2R). We then compared the selections made with
the DBS and ∆SAS methods against the I2Rs by computing the
ROC’ curves (Fig.1). Comparison of the selection made based on
the Euclidean distance with the extracted I2Rs showed that the
maximum precision was obtained with a 3Å distance, while the
maximum TPR (also called Recall) was reached with 8Å. The
DBS had a higher surface under the curve and the highest value
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Fig. 1. Comparison of DBS (black circles) and ∆SAS (red triangles) residue
selection using different cutoffs relative to the I2R method.

of TPR − FDR was reached for a distance of 3.8Å. Most DBS-
based Ab-Ag structure studies use a cutoff between 4Å and 6Å.
For a distance of 5Å, with this plot, 91.5% (TPR) of interacting
residues were selected; however, 32% of the selected residues
did not to do any kind of interaction. Surprisingly, to reach the
maximum TPR, a distance cutoff of 8Å was needed. As most of
the molecular interaction maximum distances are lower than 6Å,
we further investigated the interaction repartition.

As all interface interactions are not selected by the 5Å cutoff,
we were interested in the interaction repartition in function of the
distance. The bar plots (Fig.2A) of the interactions relative to the
chosen distance showed that the distance of 5Å, as expected based
on the previous results, allowed the selection of most interactions,
but still missed 8.5% of them, specifically 2% of all salt bridges,
5.2% of all hydrogen bonds and 6.5% of all aromatic stacking,
but none of the hydrophobic interactions. The hydrogen bonds
with a distance bigger than 5Å were all water-mediated, thus
explaining the unusual long distance. The cumulative bar plot of the
interactions (Fig.2B) showed that the hydrophobic interactions were
quantitatively the most important, followed closely by hydrogen
bonds. Conversely, salt bridges and aromatic stacking were less
frequent on the antibody-antigen interface.

Amino acid occurrence in epitopes and paratopes selected with
the Interface Interacting Residue (I2R) method
Compared to all interacting residues in STING RDB, I2R paratopes
(grey columns in Fig.3) were significantly enriched in Tyr, Ser,
Trp, Gly, Asn and Thr. I2R paratopes were depleted of most of
the other amino acids, but for Ala, Asp and Phe the occurrence
of which was not significantly different compared with all STING
RDB interacting residues. I2R epitopes (black columns in Fig.3)

Fig. 2. A:Percentage of molecular interactions by type using DSB from 0 to
3Å (black), from 3 to 4Å (dark gray),from 4 to 5Å light gray) and from 5 to
8Å (white). B: Cumulative occurrence of hydrophobic interactions (black),
salt bridges (dark grey), hydrogen bonds (light grey) and aromatic stacking
(white) at the antigen-antibody interface.

Fig. 3. Comparison of the occurrence (in percentage) of all interacting
residues in STING RDB (white), I2R epitopes (black) and I2R paratopes
(grey). Error bars are calculated as the standard deviation divided by the
root square of the set size. Stars represent statistically significant differences
compared to STING RDB, p value <0.01 using a standard t-test.

were enriched in Gly, Pro, Asn, Gln, Ser, Thr and Cys and depleted
of Glu, Arg, His Phe and Tyr.

A bipartite graph representation of the paratope-epitope
interactions indicated that the interacting residues had a very
asymmetric distribution (Fig.4). In the paratope, Tyr, the most
frequent residue, interacted with almost all the epitopic amino acids
via different types of interactions. Tyr interacted most frequently
with hydrophobic amino acids, particularly Pro, Gln, Gly, Phe, and
with the charged Lys and Arg in the epitope. Indeed, paratopic
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Fig. 4. The bipartite graph representation of the molecular interactions between I2R paratopes and I2R epitopes highlight the strong asymmetric pattern
of epitope-paratope interactions. The sphere size of each residue is proportional to the amino acid occurrence in its respective side. The vertex width is
proportional to the occurrence of the specific type of interaction; green, hydrogen bonds; blue, hydrophobic interactions; orange, attractive salt bridges; black,
repulsive salt bridges; red, aromatic stacking. Only vertices with an occurrence higher than 25 are represented.

Tyr interacted with positively charged epitopic residues via cation-
π interactions and with negatively charged epitopic residues via
hydrogen bonds. The Ser in the paratope seemed important for
establishing a network of hydrogen bonds with charged amino acids
and also with Gln and Ser in the epitope. Among the charged
amino acids in the paratope, a high prevalence of salt bridges done
by Arg and Asp was observed. More heterogeneous interactions
were observed among the epitope residues. Although Arg was less
frequent than in other kinds of protein-protein interactions (Fig.4),
it was the most frequent residue in epitopes and was involved in
all kinds of interactions. Epitopic Arg interacted mostly with Tyr
residues in the paratope via aromatic stacking, hydrogen bonds and
hydrophobic interactions. It also formed salt bridges preferentially
with Asp, but also with Glu, and repulsive salt bridges with Arg in
the paratope. Lys in the epitope formed a similar network with Tyr
in the paratope.

The most conserved subgraphs highlight the importance of
cation-π interactions in the epitope-paratope interface
The extraction of the most conserved subgraphs from the complete
dataset with two of the three nodes showed that paratopic aromatic
residues (Tyr) predominantly interacted with positively charged
residues in the epitope through an aromatic stacking interaction
(cation-π interaction) (Fig.5A). Specifically, 84 of the 101 selected
structures contained at least one cation-π interaction in which the
positive charge was hold by the epitope. In addition 51 structures
contained a double cation-π interaction (Fig.5B) composed of a
positively charged residue in the epitope that interacted with two
aromatic amino acids from the paratope. The subgraphs also showed
that salt bridges often involved three residues: two negatively
charged from the paratope with one positively charged from the

epitope. Hydrogen bonds had a low score, although they were
the second most frequent type of interaction observed in Ab-Ag
interfaces. This can be explained by the variety of amino acid group
couples that can form such interaction, thus reducing the frequency
of same residue group - same interaction couples.

Assessment of the paratope residue prediction
Using these antibody-antigen graph patterns, we then developed a
new methodology to design antibody mimetics using the antigen
sequence Fig.6. First, we computed the Bayesian probability of
all kinds of interactions to predict the residue-interaction couples.
Then, to test the predictions, we used the 21 antibody-peptide
interfaces from our dataset and a leave-one-out cross-validation
method with all the interactions and the seven residue groups (Table
1). Using a cutoff of 5%, meaning that a paratope-residue interaction
couple had to have a Bayesian probability of 0.05 to be added, we
obtained a sensitivity of 23% and a specificity of 95%, with an
accuracy of 92%.

EPI-Peptide Designer tool
From a set of user-defined Ab-Ag complexes (Fig.6A), the
EPI-Peptide Designer computed the graph representation of the
interfaces (Fig.6B). Then, from the set of graphs, the program
computed the amino acid occurrence in the second side (in our study
the paratope) and the interaction probability (Fig.6C and Fig.6D).
To demonstrate how the EPI-Peptide Designer works, we used the
epitope from the PDB structure 1TET that contains the choleric
toxin complexed with an antibody. We chose this example because
it was not in our dataset and is a small linear epitope composed
of only one segment: VEVPGSQHIDSQKKA. We used our non-
redundant 101 PDB structures as dataset input and as epitope input
the 5Å epitope extracted from the 1TET structure. Using a score
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Fig. 5. Each cell contains one of the six most common subgraphs with two
(A) or three nodes (B) from the interface graphs based on the 101 PDB
structures dataset. The title indicates in how many interfaces the motif was
observed at least once.

of 50% (representing the importance of the epitope sequence in the
design), the percentage of occurrence of five amino acids from the
BRL was modified by at least 2% (see Fig.6E).

Predicted EPI-peptides are able to bind to target LiD1 protein
To test the ability of EPI-peptide designer to successfully predict

peptides able to bind to the epitope (37FDDNANPEYTYHGIP51)
of LiD1 protein, 460 peptides were predicted, chemically
synthesized and assayed against biotinylated LiD1. As a control for
inespecific binding, the membrane was probed with AvidinAlkaline
Phosphatase alone and no reactive peptides were observed
(supplementary Figure 1). From 460 sequences synthetized, 218
were considered highly positive (47% of sequences, squares on
Fig.7A) and 83 had a lower reactivity (18%). 159 peptides (35%)
presented no reactivity. Highly positive peptides were clusterized in
two groups and a graphical representation of the patterns from each
multiple sequence alignment was computed (Fig.7B,C). Cluster 1
(supplementary table 1) contains 107 sequences and shows two
conserved tyrosine at position 9 (59% ) and 10 (41%) as well as two
conserved arginines (positions 14 and 15). The second most frequent
amino acid in those positions is also aromatic (Trp). Similarly, the
cluster 2 (supplementary table 2) includes two conserved tyrosines
at position 14 and 15 (53 and 54% respectively).

Extraction of Antigen-
Antibody complex

Automatic
Antigen-Antibody label

Redundancy Removal 

Computation of the 
interface into graph 
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interactions
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Fig. 6. Schematic of the EPI-peptide Design method to design targeted
libraries of peptide ligands. A. The Interface Research Algorithm (IRA).
B. Interface Graph Generator transform the epitope-paratope interface into a
graph format using computed molecular interactions extracted the BlueStar
STING database. C. Computation of the paratope amino acid occurrence
using Gaston (Nijssen and Kok, 2004). D. Interaction probability. E. The
epitope sequence modifications are entered in the Based Residue Library
(BRL) using the previously computed probabilities. The size of the amino
acid font represents the occurrence percentage in the libraries. The star
represents amino acid frequencies that have been modified by at least 2%
based on the epitope sequence specificity (biased library). EPI-Peptide are
synthesized and binding is validated using immunoassay techniques
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Fig. 7. Experimental validation and analysis of EPI-peptides prepared by SPOT method (A). 460 EPI-peptides predicted against LiD1 protein epitope was
synthesized. 20 µ/ml of LiD1-biotin followed by alkaline phosphatase-conjugated avidin. 1:10,000 revealed binding peptides. Black boxes represent highly
reactive peptides. Weblogo representation of the alignment obtained from reactive peptides grouped in 2 clusters: cluster 1 (B) and cluster 2 (C).

4 DISCUSSION

To overcome the many antibody limitations, such as their
inadequate pharmacokinetics, poor tissue accessibility and adverse
immunogenicity including high production costs, enormous efforts
have been focused on finding alternative strategies (Yin and
Hamilton, 2005), such as non-peptidic protein binders (Margulies
and Hamilton, 2010), smaller antibody fragments that retain
the original binding property (Hudson and Souriau, 2003;
Holliger and Hudson, 2005; Nelson and ert, 2009) and even
peptidomimetics inferred from the antibody Complementarity
Determining Region (CDR) (Wada, 2013). The generation of CDR-
derived peptidomimetics is challenging, but it would pave the
way to ample biomedical (therapeutic and diagnostic) applications
(Timmerman et al., 2010, 2009; Fontenot et al., 1998; Ponde et al.,
2011; Park et al., 2000). However, it has been shown that some
positions within the CDRs never participate in antigen binding and
some off-CDR residues often contribute critically to the interaction

with the antigen (Sela-Culang et al., 2012). For this reason, the
present work proposes a new in silico methodology to design
targeted libraries of ligand peptides that is not based on CDRs, but
on the amino acids that are important for the interaction with the
antigen. The design of these peptides is not arbitrary, but based on
the antigen sequence.

The first step to develop this methodology was to better
understand the Ab-Ag interactions. Specifically, we identified
the amino acids that are most frequently present in the epitope-
paratope interactions, the most frequent physicochemical types of
interactions and the most frequent partners in these interactions.

The amino acid frequency in the Ab-Ag interface was analysed
in several previous works. However, different cutoffs and
methodologies were used to determine the interface boundaries,
such as the distance between atoms of the antigen and the antibody
(DBS) and the difference of solvent-accessible surface (∆SAS).
Here, we developed a new method based on the interface molecular
contact (I2R) to extract from the Ab-Ag interface only the amino
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acids that make interactions, using the STING database (Neshich
et al., 2006). By comparing the selections obtained using the I2R,
DBS and ∆SAS methods, we show that DBS and ∆SAS missed
part of the interacting residues that are important for the interface.
Indeed, with a distance cutoff of 8Å, 60% of the amino acids that
do not interact are selected in addition to the amino acids that
do interactions. With a distance cutoff of 4Å, more than 10% of
interacting residues are not selected and more than 20% of selected
residues are not involved in interactions.

The I2R method also allowed studying the type of interactions
and gave an approximation of the residue energetic contribution to
the interface in a fast and easy way. Moreover, this selection method
could be used to select targets for free-energy perturbation (FEP)
(Xia et al., 2012), or to identify binding hot-spots to facilitate the
humanization of mouse antibodies (Hanf et al., 2013). As previously
noted with other selection techniques (Rubinstein 2008, Kringelum
2012, Ramaraj 2012), we found that the paratope was significantly
enriched in Tyr, Ser and Trp residues. However, by comparing
the occurrence of the I2R-selected amino acids and of all protein-
protein interactions found in the STING database (Neshich et al.,
2006), we found that the occurrence of most of the Ab-Ag interface
residues was significantly different (but not for Ala, Glu and Phe),
thus characterizing the antigen-antibody interface as a special kind
of protein-protein interaction. Concerning the extraction of the most
frequent partners, we highlighted the importance of the cation-π
interaction. Dalkas and colleagues (Dalkas et al., 2014) previously
reported that this type of interaction represents only 5% of the
Ab-Ag interfaces, whereas in our study 84 of the 101 structures
contained at least one cation-π interaction, where the positive charge
is hold by the epitope. Moreover, 51 of them contained a double
cation-π interaction composed of a positively charged residue in
the epitope that interacted with two aromatic amino acids from
the paratope. These results suggest that the cation-π interaction is
highly conserved interaction in antigen-antibody interfaces but with
low frequency as showed by Dalkas et al.

Besides gaining insights into the antigen-antibody interface
characteristics, in this work we also describe a methodology to
design peptide binders based on the epitope-paratope interface. In
addition, this methodology was experimentaly validated showing
that 65% of the predicted peptides are reactive. Those peptides
contain two consecutive conserved Tyr, a key residue in paratopes.
Moreover, those Tyr could interact with hydrophobic amino acids
from LiD1 epitope sequence (Phe37, Pro 43, Gly 49, Pro 51) or
positively charged residue (Hys 48) via cation-π or even negatively
charged residues via hydrogen bond (Asp 38 and Asp 39). The
computational design protocol is far from perfect because it does
not take into account the antibody structural properties. However,
strategies, such as cysteine-constrained peptides, could be employed
to mimic antibody loops as shown by Burns et al. and thus
force a constrained conformation of our predicted peptides. In
conclusion, our study provides insights into the principles that
guide Ab-Ag interactions and describes an original methodology
(EPI-Peptide Designer) to design ligand peptide libraries, based on
a given antigen sequence. These targeted peptide ligand libraries
might be useful for proteomic and high-throughput analyses
for antigen characterization because they minimize the work to
produce antibodies in vivo. Finally, this methodology might guide
the development of a new generation of biosensors as well as
therapeutic and diagnostic molecules.
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CHAPTER 5

Epitope-Paratope interfaces shows
differences depending on the antibody’s
organism source

Antibody as drugs present various limitations but one of the most important is the necessity

of animal immunization therefore requiring humanization before they can be used. Antibody

engineering depends on the knowledge of antibodies and their interactions. To help this pro-

cess it would be useful to know more about the differences of interface properties between

mice antibodies and human ones. To do so we used EPI-DB data and interface properties. We

created two groups, the Mouse group composed of all the structures where the antibody had

a murine origin and the Human group composed of all the Human antibodies. The Mouse

group contained 316 structures while the Human one contained 203 as detailed in the table

3.2. The complete dataset presenting redundant structures we used the 101 non-redundant

dataset containing 56 Human antibody complexed structures and 45 murine ones.

5.1 Mouse and human interface’s shows different amino acids

statistics

In order to determine if the Human’s antibody interfaces might differ from the mice’s Ab

in terms of amino acids statistics we computed a statistical analysis of the residues in both

groups. The I2RE percentage of occurrence (%Occ) from the Human and Mouse group
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show remarkable differences (Figure 5.1A). The Mouse epitopes show an increase in neg-

ative charged residues, Lys, Asn and Ser while the Human I2RE are enriched in aromatics

residues and Ile. Concerning the I2RP (Figure 5.1B) the Tyr shows a remarkable increase in

the Mouse’s paratope followed by Thr and Asn (5.7, 2.9 and 2.2% respectively). The Hu-

man paratope presents higher occurrences for the hydrophobic residues and also Phe. Those

results show that it exists differences in the interfaces from the Mouse and Human groups.
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Fig. 5.1: Comparison of the Mouse and Human groups I2R. percentage of occurrence of the I2R
epitope (A) and I2R paratope (B) from the Mouse (Dark Grey) and Human Group (Light Grey). Star
indicate a variation of at least 1.5% between the two groups.
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5.2 Interacting residues energy analysis

The statistic study of the interface leads to the conclusion that it exists important variations

between the Mouse and Human group interface amino acids statistics. To further investigate

those differences we realized a residue’s percentage of occurrence in function of the average

contact energy plot for the Human and Mouse groups. Molecular interactions were extracted

from STING_RDB (Oliveira et al., 2007) and the energy was taken from the standard energy

of contact defined in BLUE STAR STING web server(table 5.1).

Table 5.1: BLUE STAR STING values for the contacts energies

Contact Type STING Contact Energy [Kcal/mol]

van der waals 0.08
Hydrophobic interaction 0.6
Aromatic stacking 1.5
H-Bond 2.6
salt-bridge 10.0

Concerning the paratope (Figure 5.2), we can observe the residues split in 3 different groups.

The Charged residues with high occurrence and very high energy per residue, the very fre-

quent with a low energy composed of Tyr and Ser and the rest of the amino-acids that have low

occurrence and low interface energy. Comparing the Mouse and Human plots we can see that

the Human I2RP uses more E (Glu), D(Asp) and K (Lys) even if their %Occ are very similar.

As we previously saw the Ser is increased in Human group while the Tyr is impoverished but

no energetic variation is observed within the two groups. The epitope analysis (Figure 5.3)

shows a two groups organization with on one hand the high energy and high %Occ composed

of the charged residues and on the other hand all the other residues. The main difference be-

tween the Mouse and the Human epitopes lies on the switch of E (Asp) and D (Glu). Mouse

I2RE promotes the E (Glu) while R (Arg) is lowered in energy but not in %Occ. We can also

note higher energy of Met and His in this group. Concerning the Human group the Asp is
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enriched energetically while being less frequent in the Mouse group. Those two plots clearly

show the most important residues for the interface as well as differences in the composition

of the Mouse and Human groups.
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Fig. 5.2: A Plot of the I2RP Mouse residues in function of %Occ and average energy of contact. B
Plot of the I2R Paratope Human residues in function of %Occ and average energy of contact.
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Fig. 5.3: A Plot of the I2RE Mouse residues in function of %Occ and average energy of contact. B
Plot of the I2R Epitope Human residues in function of %Occ and average energy of contact.
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5.3 Most common subgraphs analysis reveals differences in

interaction patterns

The previous results confirmed noticeable differences between the Mouse and Human group

interfaces in terms of amino acids statistics as well as molecular interactions. In order to bet-

ter understand the differences of interaction patterns from one group to another we conducted

the common subgraph ranking throughout both groups using the same methodology as de-

scribed in Epi-Peptide Designer publication. Comparing the most common subgraphs we can

observe that 4 out of 5 are identical between the two groups but their order changed (Figure

5.3). The most common subgraph is the same for both interface but the second most common

in the Human group is ranked fifth in the Mouse group. The two subgraphs that aren’t shared

between the two groups, fifth from Human and fourth from Mouse, have partially the same

structure. The positive charge is hold by epitope in both cases. The fifth subgraphs of the

Human group correspond to the fourth most frequent subgraph with three nodes of the com-

plete dataset (Fig.5, EPI-Peptide Designer publication), we can then deduce that this motif is

very specific from the Human group. Moreover the fourth subgraph from the Mouse group

does not appear in the six most frequent ones from the complete dataset, meaning that this

subgraph is nearly exclusive to the Mouse interface.
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A

B

Fig. 5.4: Each cell represent one of the five most conserved subgraphs from the interface where the
antibody comes from Human (A) or Mouse (B). The title indicates in how much interfaces was the
subgraph found. ’Ep’ stands for Epitope and ’Pa’ for paratope. Molecular interactions used here are:
Aromatic Stacking (AS), Hydrophobic (Hydro) and Salt Bridge (SB)

5.4 Epitope complexed with mice antibodies have higher

coil and turn occurrence

To further analyze the differences between the Mouse and Human interfaces we computed the

secondary structure using STRIDE (Heinig and Frishman, 2004) and assessed the represen-

tation of coil,helix,turn,α-helix and strand. For this part we only used protein antigen. Very

small antigens have a very high flexibility and their structure contains a very high amount of

unstructured parts. The Mouse protein group contains 34 structures while the human protein

contains 44. We also used the DBS 5Å to select epitope since the previous results showed

the I2R secondary structure lack prediction capacity. As we can see on the figure 5.5 the most

represented secondary structure is the turn with more than 30%. The α-helix, coil and strand

have representations of 19.2, 22.8 and 19.6% respectively. Those results are similar to Ru-

binstein’s (Rubinstein et al., 2008), the epitope are mostly composed of unorganized structure

(Turn and Coil). Comparing the Human and Mouse secondary structures, we can notice that
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Fig. 5.5: Percentage of secondary structure of the DSE 5Å residues from the Protein Group(black),
Human protein(white) and Mouse protein(Gray)

the strand representation is higher in the Human group while the coil and turn are enriched

in the Mouse DSE. This observation reinforces the idea of different patterns of recognition of

epitope for the antibody from Humans and Mouse even on a structural level.
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5.5 Prediction of Antibody species from epitope sequence

using linear regression analysis

As shown by the previous results epitope recognized by mice and humans antibodies have

different patterns in terms of amino acids and molecular interactions. In order to understand

better the differences between the Mouse and Human groups we tried to predict the group

based only on the epitope properties. In this experiment we tried the group prediction with two

different methods of selection, Distance based Selected Epitope (DBE) with 6Å cutoff and

Interface Interacting Residues Epitope (I2RE). We also tested physicochemical and structural

properties independantly. This led to four different datasets by crossing selection method and

properties:

• Distance based Selected Epitope with PhysicoChemical Properties (DSE.PCP)

• Distance based Selected Epitope with Secondary Structure properties (DSE.SS)

• Interface Interacting Residues Epitope with PhysicoChemical Properties (I2RE.PCP)

• Interface Interacting Residues Epitope with Secondary Structure properties (I2RE.SS)

The regression analysis was applied to the matrices using as criteria the equation 1 as de-

scribed by McDonald (2009). We assigned b(i) = log(0.99/(1 − 0.99)) when mouse and

b(i) = log(0.01/(1 − 0.01)) when human for equation 2. By solving (2) we used (1) as a lin-

ear predictor and to minimize the mis-classification rate as described before in Elden (2007).

Logistic regression equation 1:

log(
p(x)

1 − p(x)
)β0 + xβ
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Multiple regression model, equation 2:

Y1 = a+ b1 ×X1,1 + b2 ×X1,2 + b3 ×X1,3...

Y2 = a+ b1 ×X2,1 + b2 ×X2,2 + b3 ×X2,3...

To compare the different linear models obtained we used a multiple ROC curve using False

Positive Rate (FPR) and True Positive Rate (TPR) computed as follow :

FPR =
FP

FP + TN

TPR =
TP

TP + FN

with TP being True Positive, FP False Positive, FN False Negative and TN true negative.

The figure 5.5 shows the results of the different multiple regression predictions. For the PCP

set of parameters, comparing the I2RE and DSE selection we can see that surprisingly the pre-

diction is slightly better using distance selected epitope. The significant parameters p-value

≤ 0.05) for the DSE.PCP are presented in the table 5.2 with their respective p-values. The

most important parameter for the prediction are the polar and alcohol amino acids. This sug-

gest a difference of the hydrogen bond interactions patterns between the Mouse and Human

group. Most notable differences are found using the structural parameters. The DSE sec-

ondary structure parameters allow a perfect prediction of the group using all six parameters

while the I2RE structure give a worst prediction than the PCP. Those observations confirmed

the previous idea that epitope residues, spatially close from the Ab but not making interac-

tions, play a structural role that is important for the interface. The ability to predict affinity

for a specific specie’s antibody could improve immunization results.
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Fig. 5.6: ROC curve of the linear model prediction for the distance based selection epitope and PCP
(DSE.PCP), DSE and secondary structure (DSE.SS), I2RE and PCP (I2RE.PCP) and I2RE secondary
structure (I2RE.SS)
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Table 5.2: Significant parameter for DSE.PCP
Parameter P-value

Percentage N 0.00471
Percentage Q 0.00678
Percentage S 0.01839
Percentage T 0.01939
Percentage H 0.02027
Aliphatic Index 0.02243
Negative charged 0.02718
Percentage W 0.0274
Percentage H 0.02771
Percentage Y 0.02775
Percentage A 0.02796
Gravy 0.02913
Percentage R 0.02987
Percentage K 0.03159
Percentage L 0.03856
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CHAPTER 6

Discussion

Antibodies are used in a broad spectrum of context in biology due to their specificity and

affinity for their target protein. This large diversity of applications has triggered a lot of

research in order to understand their structure, the mechanisms of their paratope diversity,

how to engineer antibodies against desired target and produce large quantity of them. Some

of this problems have been solved to some extent and led to three Nobel prizes in physiology

during the last fifty years. In 1972 Gerald M. Edelman and Rodney R. Porter were awarded

for their discovery on the structure of the antibodies, in 1984 Niels K. Jerne, Georges J.F.

Köhler and César Milstein for the production’s principle of monoclonal antibodies. Finally

Susumu Tonegawa won the Nobel prize in 1987 for the discovery of genetic principle for the

generation of antibody diversity.

Those discoveries enabled the apparition and development of the immunotherapy. With nowa-

days more than 30 antibodies approved by the Food and Drug Administration more limita-

tions of antibodies appeared such as the poor tissue accessibility, fast clearance and high cost

of production and storage. The first approach to overpass those limitations was a switch to

smaller forms of antibody retaining binding capacity such as fragmented antibody. In a sec-

ond time, researchers attempted to obtain binding using small protein sequences through large

combinatorial libraries or by using existing interface called rational design and use an existing

protein-protein interface to engineer in order to create a new binding molecule to a specific

target. Those techniques are limited by our knowledge of the complementary mechanisms of

PPI.
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Antibody-antigen is a specific type of PPI possessing very high affinity and sensibility as well

as a great source of inspiration for rational design. Existing research on the Ab-Ag inter-

face lack deep analysis in terms of properties and complexed patterns extractions necessary

to guide and help design of new protein binding domain. In order to understand better the

mechanisms and characteristics of this interface we developed the Epitope-Paratope Inter-

face DataBase (EPI-DB). EPI-DB was especially designed to store informations extracted

from analysis of Ab-Ag complexed crystal structures that provide a more reliable source to

investigate the complementary binding properties. EPI-DB was implemented in MySQL re-

liable and free SQL language and uses different techniques of selection with a broad range of

threshold. Storing interfaces selected using distance based and difference of solvent accessi-

ble surface is especially interesting since it requires a substantial amount of computation. For

each interface, we selected the sequences as well as the position in the chain and stored this

information for easy retrieval and fasta format extraction but is also stored in another field the

position in the chain of the selected residues. This information can be used to deduct interface

limits from combination of DBS and ∆SAS like Ramaraj et al. used. Using 3D structures as

source limits the quantity of data available since obtaining crystal structure isn’t trivial espe-

cially for large, non-covalently bound complexed protein. Antibody structures are nowadays

indexed in specialized database such as the IMGT/3D or SAbDab. The IMGT has more than

4000 references to antibody structure with annotated CDRs and numbered residues using the

IMGT numbering system (Ruiz and Lefranc, 2002; Ehrenmann and Lefranc, 2011). SAbDab

has more than 2000 structures and label structure were the antibody is in complex. Those two

databases are specialized on antibodies and their main purpose are to identify CDRs and help

improve antibody structure prediction. EPI-DB focus on the specificity of the Ab-Ag interface

and therefore store epitope and paratope as a pair. EPI-DB only contains structures of reliable

resolution, maximum 3Å, and complexed with protein antigen. This approach also funda-

mentally differs from epitope-only databases such as the IEDB (Vita et al., 2015), Bcipep
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(Kumar et al., 2005) or SEDB (Om Prakash et al., 2012) containing respectively 142.175,

3031 and 614 epitopes. IEDB contains immune epitopes curated including from the pub-

lished literature. Bcipep contains only curated epitopes from literature while SEDB contains

only epitopes with structures from Tcell, Bcell or MHC. The Antigen Antibody DataBase

(AgAbDB) is the most similar tool to EPI-DB focusing on Ab-Ag complexed structure only

(Kulkarni-Kale et al., 2014). The authors develop the Antigen-Antibody Interaction Finder

(AAIF) a program especially designed to compute molecular interactions. To the last update

the AgAbDB has 505 annotated structure which is a bit inferior to the EPI-DB possessing 543

structures. They also added the solvent accessible surface to the residues as well as the bound-

aries of the CDR using the Wu-Kabat numbering but did not compute the interface properties.

The list of properties we computed is intended to be as complete as possible with a focus on

parameters that were used for epitope prediction from sequence. The list parameters includes,

accessibility used by Hopp, who obtained an epitope’s prediction performance of 60% , hy-

drophobicity from Manavalan and Ponnuswamy 1978 reaching 61% secondary structure used

by Pellequer and Westhof reaching 70%. Since EPI-DB was designed for the biologists as

a source of structural information on epitope and paratope from structure we implemented a

web interface. The interface allows the user to understand what is EPI-DB, parse the data

of the database table by table and allow download of the full SQL file to implement EPI-DB

locally if needed. The interface is currently basic but provides a friendly way to retrieve data

like epitope and paratope sequences or mice or Human antibodies complexed with antigen

structures.

The objective of EPI-DB is to become a reference in term of epitope and paratope study using

crystal structure. To this end we decided to develop Interface Research Algorithm (IRA)

and we implemented it in Java (Biojava) allowing and automatic extraction of very specific

structure from the Protein DataBase (Berman et al., 2000). Biojava offers a complete set

of class and functions to handle the PDB file, including an automatic reader, chain-specific
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sequence extraction as well as resolution techniques and quality. Using this tool and already

implemented Smith and Waterman (Smith et al., 1981) protein alignment we developed a tool

able to precisely extract and automatically label Ab-Ag structures from a PDB file. IRA is

also multithreaded for speed optimization and can also be used to extract any other types of

PPI from the PDB by changing its input.

Epitope prediction nowadays suffers from problem related to the quality of the data and low

ratio of positive/negative used to develop prediction model (Greenbaum et al., 2007; Denh

et al., 2011; Subramanian and Chinnappan, 2013). In order to avoid this issue we worked with

crystal structure extracted interfaces. All along this work we also relied on the notion of pair

of epitope and paratope. A pair is obtained from a single structure using a defined selection

method and associated cutoff. This means that epitope and paratope are selected from the

antigen and antibody respectively in a mirrored way. Using the computed properties based on

the epitope and paratope we investigated their correlation and their predictive capacity. By

doing the absolute correlation clustering (Figure 3.6) of the properties we were able to easily

see the behaviour of the different variables. The presence of very strong clusters shows the

prediction capacity of a good portion of the properties. To assess the quality of the prediction

we came up with the system called rightful pair prediction (Figure 3.7). The objective of

the model was to assess if an epitope and a paratope formed a rightful pair (coming from

the same structure, selection method an cutoff) or not. From the dataset (101 interfaces)

were taken a given number of pairs of epitope paratope forming the positive pairs. Those

pairs were shuffled to form the same amount of mismatched pairs. This methodology of

prediction validation ensure the data quality and the same number of negative and positive

elements. The development of ensemble of models allowed us to test various combinations

of properties in an automatic way. The objective was the maximization of the AUC from

the rightful pair prediction. The best ensemble of models reached a prediction of 0.6420

of AUC. These results show that complex correlations exist between the paratope and the
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epitope properties. Using the epitope properties it is possible to predict, with good accuracy,

if a sequence corresponds to its cognate partner. This approach trained with set of epitopes

and corresponding CDR could be an interesting addition to the methodology developed by

DeKosky et al. which consist of antibody CDR high-throughput sequence. This methodology

would potentially be able to predict which CDR sequence would bind to the antigen used for

the immunazation.

Due to the difficulty of the epitope prediction from sequence has emerged a new trend of us-

ing supporting information. By aggregating additional information to the input data such as

epitope prediction using protein family or for specific antibody as suggested by Sela-Culang

et al.. The collaborative work done with other coworkers following this trend led to a publi-

cation in BMC bioinformatics (See annex 1).

Even if X-Ray crystallography is one of the best way to determine epitopes from antigen,

the sequences obtained can vary considerably depending on the interface selection method.

Most of selections used are first distance between atoms of the Ag and the Ab, difference of

solvent accessible surface or combination of those two. All of those methods can be adapted

using various cutoff values and therefore result in different epitopes selected from the same

interface. Those methodologies lead to divergent results such as the work of Rubinstein et al.

that found epitope significantly enriched in Tyr and Trp using a DBS with a 4Å cutoff and

Kringelum et al. observing that epitope composition was not significantly different from the

rest of the antigen surface using the Contacts of Structural Units server (Sobolev et al., 1999).

In this work we developed a new method based on Interface Interacting Residues (I2R) to

select epitope-paratope residues that allows to compare these different methodologies.

Comparing the I2R to the distance based and ∆SAS selection showed that the two latest

miss a set of residues involved in interaction and are therefore important for the interface.

Nevertheless the residues selected by the two selection techniques previously mentioned have

a selection span that will take into account close amino acids which, even though they do not
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make interaction, might be important for the epitope conformation.

The I2R selection method we developed allows an approximation of the residues energetic

contribution of the interface in a fast and easy way. Moreover this selection could be used to

select target for free-energy perturbation (FEP) (Xia et al., 2012) or to investigate the binding

hot-spot to ease murine antibody humanization (Hanf et al., 2013).

Protein Protein interfaces involve complicated recognition mechanisms on which rely most

of the cell interactions. Better understanding of the complementarity and mechanisms that

lies within the interface would help improve field like drug design, protein de novo design

and many others. To extract interaction pattern from the interface computational methods are

required. Interface Graph Generator (IGG) allows the users to easily transform the interface

into a graph format that can be used in computational pattern searches. IGG was developed

in java, a cross platform language, that enabled us to implement an easy to use graphical user

interface. The output of the graph can be obtained into two different formats, ’pajek’ which

is one of the most common format and the format corresponding to Gaston’s input (Nijssen

and Kok, 2004).

EPI-Peptide designer was implemented in combination with IGG since it relies on the graph

representation of the interface and share similar input. The same interface was used for both

programs. EPI-Peptides are the results of the fusion of the two main methodologies for pep-

tide ligands selection being the randomization of peptide and the rational design.

In vitro display selection of peptides from libraries has been a successful methodology for

the development of new peptide binders. From the phage display approach (Smith and Pe-

trenko, 1997; Hoess, 2001) to the ribosomes display (Mattheakis et al., 1994), mRNA display

(Roberts and Szostak, 1997; Cho et al., 2000) and CIS display (Odegrip et al., 2004a) various

techniques have successfully produced peptide binders. The success of those methodologies

relies on large combinatorial peptide libraries and a multi step process of affinity selection and
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mutation. By creating biased libraries for a specific target EPI-Peptide designer may allow to

reduce the size of the library and therefore simplify these methodologies.

The analysis conducted on the Mouse and Human showed that antibodies from mice and

Humans have different amino acids propensities. In 2003, Zemlin et al. already investigated

the differences of the CDR-H3 between Human and murine Abs. The results we obtained

on full paratope go in the same direction than their residues statistics analysis for the Tyr but

differ for Ser and Thr propensities. Both statistic analysis match with each other, showing the

elevated level of small hydrophobic residue (Val, Leu, Iso) and Phe in the Human antibodies

interfaces. The statistics differ for the Thr where we found its occurrence higher in the Mouse

group and they found the Thr increased in the Human group. This is most likely due to the

difference of selection method. The difference between interfaces from mice antibody and

Human antibody but our analysis showed that the composition of the epitope they recognize

is also different. The epitope in the Mouse group showed higher propensities of Ile and Phe

while the Human epitopes where enriched in Glu, Asn and Ser. The results we obtained using

the energetic analysis and conserved subgraph extraction show that Human antibodies and

mouse antibodies recognize preferentially different antigen parts.

The prediction obtained using the distance based selected epitope and the secondary structure

reaching a perfect prediction is probably due to over fitting and all those predictions should

be done using a 5 cross fold validation. Nevertheless the results obtained show clearly that

the properties from distance selected epitope give better results than the I2R selection. This

is probably due to the larger selection of the DBS epitope and it rose the hypothesis that non

interacting residues confer properties to an epitope that help improve the prediction.
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CHAPTER 7

Conclusions and Perspectives

All along this work, we have gained insight into the antibody-antigen interfaces. We observed

the differences of epitope and paratope sequences due to different interface selection meth-

ods, the capacity of the epitope physicochemicals properties to predict paratope’s ones, the

importance of the cation-π interaction (the major importance of epitope positive charge and

paratope aromatic aminoacids) using the common subgraph analysis. Using this knowledge

our study proposed an original methodology able to to generate targeted peptide ligand li-

braries. The success of our method was observed using the LiD1 protein as target with which

we observed binding of 65% of the synthesized EPI-Peptides. The methodology developed in

this work could be used to design a new generation of biosensors.

As a perspective of this work, we hope to do a deeper analysis of the LiD1 peptide binder

found in this work, including affinity measurements in order to introduce a filter in the pro-

gram reducing the number of peptides to test. Moreover it would be interesting to further

validate this tool using other target antigen with available corresponding antibody, to select

reactive EPI-peptides and compare their binding affinity with the antibody.

Another perspective of this work is to add some structural features to this methodology. This

would be helped by analyzing antigen-antibody interfaces using IMGT CDRs numbering

methodolgy ’collier de perles’ (Lefranc et al., 2005) and could also profit from the structural

alphabet (Etchebest et al., 2005).

EPI-DB offers a new perspective on the study of Antibody-Antigen interface. The study of

correlation of properties shows it exists complexed and relevant relations that can be used to
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developed prediction from one side of the interface to the other. The approach of properties

prediction of the complementary sequences is of great interest for new interface design and

should be tested using different selection methods and a more complete dataset. The proper-

ties table could also be improved by adding more features. A property not yet implemented

is the flexibility and it would be very interesting to add this classic property to the database.

Research in the field of protein ligands has been proven of great biological importance for their

applications as probes as well as potential therapeutics. Nowadays resolution of complexed

protein is improving and contribute to the development of new tools based on those data.

Antibody-antigen interface complementarity is more and more understood but still lack deep

and complex analysis using computational methodologies. We hope that this work will help

understand the antibody-antigen interface in terms of molecular interactions, complementary

and correlation of properties. This knowledge could help us developed future therapeutics,

improving our health and our quality of life.
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Annexes

Annex 1: Classification epitopes in groups based on their protein family

Collaborative work on epitope prediction have led to the following article submitted and ac-
cepted to BMC Bioinformatics.
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Abstract

Background : The humoral immune system response is based on the interaction between antibodies and antigens for the  
clearance of pathogens and foreign molecules. The interaction between these proteins occurs at specific positions known as  
antigenic  determinants  or  B-cell  epitopes.  The  experimental  identification  of epitopes is  costly and  time  consuming.  
Therefore the use of in silico methods, to help discover new epitopes, is an appealing alternative due the importance of 
biomedical applications such as vaccine design, disease diagnostic, anti-venoms and immune-therapeutics. However, the 
performance  of  predictions  is  not  optimal  been  around  70%  of  accuracy.  Further  research  could  increase  our  
understanding of the biochemical and  structural properties that characterize a B-cell epitope.

Results: We investigated the possibility of linear epitopes from the same protein family to share common properties. This  
hypothesis led us to analyze physico-chemical (PCP) and predicted secondary structure (PSS) features of a curated dataset  
of epitope sequences available in  the  literature  belonging  to two different  groups of antigens  (metalloproteinases  and  
neurotoxins). We discovered statistically significant parameters with data mining techniques which allow us to distinguish  
neurotoxin from metalloproteinase and these two from random sequences. After a five cross fold validation we found that  
PCP based models obtained area under the curve values (AUC) and accuracy above 0.9 for regression, decision tree and  
support vector machine.

Conclusions:  We demonstrated  that  antigen's  family can  be inferred  from properties  within  a  single  group of linear  
epitopes  (metalloproteinases  or  neurotoxins).  Also we discovered  the  characteristics  that  represent  these  two epitope  
groups including their similarities and differences with random peptides and their respective amino acid sequence. These 
findings open new perspectives to improve epitope prediction by considering the specific antigen's protein family. We 
expect that these findings will help to improve current computational mapping methods based on physico-chemical due it's  
potential application during epitope discovery.

Keywords: Data mining – B cell epitopes – metalloproteinases – neurotoxins – protein family – epitope prediction.



1 Background

Living organisms often encounter a pathogenic virus, microbe or any foreign molecule during it's lifetime[1]. The B  
cells of the immune system recognize the foreign body or pathogen's antigen by their membrane bound immunoglobulin  
receptors, which later produce antibodies against this antigen[2][3]. The recognized sites on the antigen's surface, known  
as epitopes, represent the minimum wedge recognized by the immune system[4]. Therefore, epitopes lie at the heart of the  
humoral immune response[5]. The rapid reaction to a previously encountered antigen depends on the binding ability of the  
antibodies  found  in  the  immune  system of the  organism[6],  the  physico-chemical  properties  of the  epitope  and  it's  
structural conformation[7]. Thus, understanding epitope characteristics and how they are recognized, in sufficient detail,  
would allow us to identify and predict their position in the antigen[8].

The main  objective of epitope prediction is to design  a molecule that  can  replace an  antigen  in  the process of either  
antibody production or antibody detection[4][9][10][11]. Such a protein can be synthesized in case of peptides or in case of 
a larger protein, produced by yeast after the gene is cloned into an expression vector[12]. After 30 years of research, it is  
known that the optimum size of peptides possessing cross-reactive immunogenicity is between 10-15 amino acids[13]. The 
earliest  efforts  made  to  understand  and  predict  B-cell  epitopes  were  based  on  the  amino  acid  properties,  such  as 
flexibility[14],  hydrophaty[15],  antigenicity[7],  beta turns[16]  and  accessibility[17].  Epitope prediction  is important  to 
design epitope-based vaccines and precise diagnostic tools such as diagnostic immunoassay for detection, isolation and  
characterization  of  associated  molecules  for  various  disease  states.  These  benefits  are  of  undoubted  medical  
importance[18][19].

Recently developed prediction  methods  face several  challenges  like  data  quality[20][7],  a  limited  amount  of positive  
learning  examples[21] or difficulty in choosing an appropriate negative learning examples[22]. These negative training  
samples  may  harbor  genuine  B  cell  epitopes  and  affect  the  training  procedure,  resulting  in  a  poor  classification 
performance[23][24]. Moreover, none of the published work took into account the protein family or function to predict 
epitopes[25].

The present study explores the possibility of epitopes belonging to same protein family share common properties. For these 
purpose, the amino acid statistics, physico-chemical and structural properties were compared within each other[26] for two 
protein's group. This assumption is based on previous studies showing that it exists amino acid trends in composition and  
shared  properties  for  intravenous  immunoglobulins[27].  Despite  the  difficulty  of  distinguishing  epitopes  from  non  
epitopes[28] the  addition  of information,  such as  evolutionary and  propensity scales,  proved to be helpful  for epitope 
prediction[21].  Therefore,  it  is interesting  to assume including  information  about the protein  antigen's  family may be  
resourceful to improve prediction.

2 Methods

Dataset composition

We have obtained experimentally validated 106 linear B-cell epitopes for two groups of antigens (metalloproteinases and 
neurotoxins) extracted from Pubmed (http://www.ncbi.nlm.nih.gov/pubmed/).

They were manually curated  until  September  2012  following  several  search  criteria  based on  the  keywords:  epitope,  
metalloproteinase,  proteinase,  peptidase,  toxin  and  neurotoxin  in  a  joint  and  disjoint  manner.  The  redundancy was  
removed for repeated sequences using 100% identity as threshold and the maximum size of the epitopes was fixed to be  
equal or less than 32. As non epitope data, we created 49 linear random peptides proportional number to the mean of the  
amount of epitopes in the groups metallorproteinase and neurotoxin.  These random peptides are based on the statistics  
from the  dataset  UniProtKB/Swiss-Prot,  meaning  that  the  sum of the  random peptides  amino  acids  are  equal  to the  
percentages  found  in  uniprot  database.  The  final  set  contained  99  non  redundant  epitopes, containing  29 
metalloproteinases, 70 neurotoxins and 49 random peptides as showed in Additional file 1.



Feature selection for data mining analysis

In this study, we generated and used 33 physico-chemical parameters composed by aliphatic index, GRAVY, isoelectric 
point, amino acid content in percentages, amino acid groups such as hydrophobic (AVILMFYW), positive charged (RHK),  
negative charged (DE), not charged (STNQ) and specials (SGP) as described by Gasteiger with the difference that each  
feature was transformed to percentage removing the length  difference for the epitope sequences[29].  Also 6 predicted  
secondary structure properties such as strand, helix, coil, relative surface accessibility, absolute surface accessibility and z-
fit  which  were calculated with Netsurf algorithm[29].  These parameters  were calculated for the three groups in  study 
(Metalloproteinase, Neurotoxin and Random) and the results where compared using Welch two sample t-test available in  
the statistical software R. In total, we evaluated 3 different matrices for the classification purpose of discover how much  
sequence-derived  information  was  needed  to  obtained  a  good  classification.  The  first  matrix  based  of  purely  PCP  
information, a second with only PSS data and a third one which was merely the addition of the PSS features to the PCP  
matrix.

Selection of data mining methods and statistical analysis

The Konstanz Information Miner (KNIME)[30] was used to evaluate Kmeans (KM),  decision tree[31] (DT) , naive bayes 
classifier  (NB),  support  vector  machine[32]  (SVM)  for  the  matrices  generated  with  our  dataset.  The  free  software  
environment R for statistical computing and graphics was used to create the multiple regression models (LMR). For LMR 
the nominal class variable was transformed into a numerical variable for the two groups, a positive with value log(0.99/(1-
0.99)) for metalloproteinases and a negative been log(0.01/(1-0.01)) for neurotoxins. The linear model function available  
in R was used to solve a series of equations where the class variable was equal to the feature variables. After solving the  
equations, a linear multiple regression model was generated, a p-value was calculated and the model was rejected for any 
p-value superior to 0.005. The predicted resulting score of the model was scaled (0 to 1) by using exp(predicted value./
(1+predicted value))  formula.  The performance of all  the generated  models was evaluated for every possible decision 
threshold with ROCR package by using the parameters AUC (area under the curve formed by true and false positive rates)  
and accuracy, which gives an overall view of the performance of the classification method used [33].

3 Results

Statistical differences of amino acid composition between metalloproteinase and neurotoxin linear epitopes 
compared with random sequences

The dataset contain 11 metalloproteinases and 16 neurotoxins. The two protein families (or group) respectively contains  
29  and  70  epitopes with  an  average  sequence length  of 13.8  amino  acids  (aa).  The  minimum  length  was 4  aa  and  
maximum 32 aa. The negative or non epitope set contained 49 sequences of 14 aa length (Table 1).

Table 1. Dataset composition

The metalloproteinase and neurotoxin epitopes showed to be different from each other showing a statistical dissemblance  
for a confidence interval  of 95% for the amino acids R, K, M and Y (Table 2, column 1). Also when compared these  
epitopes to their  respective proteins they showed differences for the amino acids R, Q, V and M for metalloproteinases 
(Table 2, column 4) and D and C for neurotoxins (Table 2, column 5). 

These epitope groups also indicated variation when compared to our non epitope control for the amino acids K, C, A, V  
and I for metalloproteinases and R, K, D, N, Q, C, A, I, K, M and W for neurotoxins (Table 2, columns 2 and 3). As  
expected,  we also detected  differences in  other  parameters  such  as  aliphatic  index,  grand  average  of hydropaty and  
isoelectric  point  (Table  2,  last  three  rows).  Therefore,  we were  able  to  identify common  characteristics  in  epitope's  
composition within unique antigen groups and differences between neurotoxin and metalloproteinase epitope groups.

Groups Proteins Non epitopes
544996 -- --

16 29 0
11 70 0

Negative examples 13 0 49

Epitopes
Uniprot
Neurotoxin
Metalloproteinase



Table 2: Analysis of means for all datasets with Welch two sample T-test

Values under  p-value  under  0.05  are  writen in  bold.  IC=95%,  H0  =  Difference in  means is  cero.  Hi  =  Difference in  means is  not  equal  to  zero. 
Metalloproteinases epitopes = ME, Neurotoxin epitopes = NE, Metalloproteinase proteins = MP, Neurotoxin proteins = NP, Random = Random sequences.

Decision  tree  and multiple  regression models  can  distinguish  linear  B-cell  epitopes  from two  different 
antigen groups

We investigated  our  capacity  to  discriminate  if  an  epitope  belonged  to  neurotoxin  or  metalloprotease  based  on  the  
statistical significant differences observed in epitopes amino acids composition,  isoeletric point, gravy and aliphatic index 
(Table 2). For this purpose, we used five different methods: SVM, NB, DT, KM and LMR.

 
Our  analysis  used  three  different  input  matrices  as  described  before:  Only  physico-chemical  properties  (PCP),  only  
secondary structure (PSS) and the combination of both (PCP+PSS) for each algorithm.  The performances displayed as  
AUC  values for all data mining methods are showed in table 3.  All the methods with the exception of KM were able to  
group and distinguish correctly both groups of epitopes. As expected, the best results were for SVM followed by similar  
performance by much simpler techniques, LMR and DT.

    Table 3: Performance of all data mining methods showed in AUC and accuracy.
Matrix PCP PSS PCP+PSS
Models AUC Accuracy AUC Accuracy AUC Accuracy
SVM 1 1 1 1 1 1
MLR 0.986 0.952 0.655 0.714 1 1
DT 0.957 0.962 0.921 0.943 0.943 0.952
NB 0.8 0.838 0.521 0.667 0.793 0.838
KM 0.493 0.667 0.509 0.681 0.507 0.667

Parameter
p – values for a confidence interval of 95%

(1)ME vs NE (2)Random vs ME (3)Random vs NE (4) MP vs ME (5) NP vs NE
R (Arg) 0.0029 0.0762 0.0001 0.0241 0.4226
H (His) 0.0362 0.1046 0.1074 0.5636 0.7906
K (Lys) 0.0000 0.0113 0.0000 0.4098 0.4818
D (Asp) 0.0890 0.6994 0.0079 0.7091 0.0030
E (Glu) 0.9289 0.2681 0.0838 0.6696 0.4072
S (Ser) 0.2953 0.5024 0.3546 0.9630 0.8954
T (Thr) 0.4077 0.1867 0.3509 0.2199 0.4523
N (Ans) 0.1878 0.7647 0.0101 0.5880 0.4944
Q (Gln) 0.1509 0.9483 0.0039 0.8471 0.8185
C (Cys) 0.1821 0.0003 0.0000 0.0316 0.0075
G (Gly) 0.6979 0.2576 0.4620 0.3509 0.8450
P (Pro) 0.3156 0.5165 0.3781 0.2103 0.4271
A (Ala) 0.2121 0.0066 0.0000 0.1092 0.0756
V (Val) 0.0993 0.0019 0.2903 0.0550 0.1854
I (Ile) 0.2657 0.0068 0.0352 0.1286 0.3275

L (Leu) 0.1374 0.1182 0.0000 0.5549 0.2322
M (Met) 0.0017 0.0725 0.0000 0.0282 0.2477
F (Phe) 0.6997 0.4713 0.0765 0.7890 0.5818
Y (Tyr) 0.0023 0.5245 0.0000 0.8318 0.0938
W (Trp) 0.0889 0.9443 0.0244 0.5782 0.1221

Isoe.Point 0.0425 0.5190 0.5190 0.0425 0.3221
gravy 0.0672 0.0010 0.0000 0.0672 0.0514

Aliph. Index 0.0086 0.0000 0.0000 0.0086 0.8550



During the use of PSS features as input, a reduction in the performance of 0.1-0.3 AUC value was noticed for MLR and  
NB techniques (Table 3). Only SVM and DT obtained an AUC superior to 0.9 while all the other methods performed 
poorly with AUC of 0.65 for LMR and close to 0.5 for the others. The SVM technique performed with an AUC of 1.0 for  
combined properties while LMR showed a slight increase from 0.9 to 1.0. By the other hand DT, NB and Kmeans stayed 
the same (Table 3). These results indicate that the type of input used (PSS or PCP) were not significant, where the models  
based on the PCP were the simplest to analyze and understand.  The most stable AUC results were obtained with DT 
method where all the matrices analyzed resulted in an AUC value around 0.95.

The techniques DT and LMR are statistical  approaches that  showed results similar  to SVM which is a non statistical  
classifier. These methods allowed us to discriminate the epitopes belonging to metalloproteinases or neurotoxins and to 
identify the important properties inside these groups. The relevant features to classify the epitope groups for the LMR and 
DT models can be found in table 4.

We observed which amino acids were critical to differentiate epitopes from neurotoxins and metalloproteinases. In the case  
of LMR model, the amino acids asparagine (N), glutamine (Q) and serine (S), and in the case of DT model the amino  
acids lysine (K), aspartate (D) and methionine (M) were the key to achieve good classification (above 0.9 AUC) (Table 4).

 Table 4: Properties used by the classification models until 8º order out of 39.

4 Discussion

The  amino  acid  composition  has  been  investigated  for  proteins  related  to  the  B-cell  response  [34]  and  as  key for  
understanding  protein-protein interactions[35][36] alongside their  role during prediction of epitopes for both T and B-
cells[37].  Epitopes  are  rich  in  charged  and  polar  amino  acids  and  low in  aliphatic  hydrophobic  amino  acids,  when  
comparing  the epitope amino acid distribution to either  the entire  PDB database [38] or to the antigen [39][40].  Also  
Rubinstein [39] suggested that the amino acid Tyr is significantly over-represented in epitopes and that Val is significantly  
depleted. Interestingly, the residues Arg and Lys are more frequent in the epitopes of our dataset along other differences as  
aliphatic  index and gravy. This particularities are probably a result  of focusing common features in  a diverse epitope  
group, phenomena which was evidenced in the amino acids composition found in epitopes for papilloma viruses [22]. The  
PCP based methods have been explored in detail for epitope prediction [40] with some limitations in terms of specificity  
and  precision  as seen in  models for SVM with  AUC values of 0.85 for amino acid composition and  0.58,  where the  
accuracy never surpass 0.8 [26]. 

Classification Model: Linear Multiple Regression
Order PCP PSS PCP+PSS

1º Statistic of N Z-fit Statistic of E
2º Statistic of Q ASA Statistic C Atoms
3º Statistic of S RSA Statistic of N
4º Statistic of T Strand index Statistic of Q
5º Uncharged STNQ Helix index Statistic of S
6º Special CGP Coil index Statistic of T
7º Statistic H Atoms -- Uncharged STNQ
8º Statistic C Atoms -- Statistic H Atoms

Classification Model: Decision Tree
Order PCP PSS PCP+PSS

1º Statistic of K Z-fit Statistic of K
2º Statistic of D RSA Statistic of D
3º Statistic of M ASA Statistic of M
4º Statistic S Atoms Strand index Statistic S Atoms
5º Statistic of I Coil index Statistic of I
6º Statistic of W -- Statistic of W
7º Statistic of Y -- Coil index
8º Isoelectric point -- --



Our  study suggests  an  improvement  in  performance  when  a  single  epitope group  is  targeted,  resulting  in  AUC and  
accuracy superior  to 0.9.  We included groups of amino acids based on type of charge and lateral  chain  due to the the  
concept of amino acids working cooperatively in protein:protein interfaces[41]. Our results indicate that these amino acid  
groups such as hydrophobic, polar, or special amino acids (CGP), do not posses significance for the prediction models by 
themselves but may add value when combined with single amino acid statistics.

The secondary structure  of epitopes was also investigated by several  authors[42][43][44],  and  epitopes are  in  general  
reported to have significantly less strands and helices and significantly more loops compared to the rest of the antigen[8]
[38]. The over-representation of loops is small but significant and in agreement with the perception that protein –protein 
binding sites are flexible regions[41]. The overall secondary structure of epitopes has been reported to been different from 
regular protein–protein interfaces[23] based on crystals available on the PDB indicating some structural particularities of  
the Ab-Ag interaction[45]. These particularities could be also family restrictred which could be interesting to explore with  
computational  methods despite of having an accuracy of 79% when predicted from sequence [46] but the DT outcome 
showed no real  relevance in  PSS features when applied to epitope classification.  The inclusion of predicted secondary  
structure as commonly done[40] could be a source of misleading results for the prediction, issue which has been reviewed  
briefly in the literature[47].

The features that  characterize each epitope's group could represent  the complementary data needed to improve epitope 
prediction.  For  example,  when  adding  evolutionary information  to the  prediction  the  performance was improved[48]  
despite recent studies that  explain no relation exits between epitope and antigens sequences[28]. Therefore, we showed  
that  a wide range of data mining  methods including support vector machine[21],  decision tree[48],  regression[26] and  
Naive Bayer classifier  had  similar  successful  results  bringing  some light  to the  question  of which  characteristics  are  
important for these epitope groups. It's important to note that we used amino acid percentage[4] in comparison with some  
recent epitope prediction methods that prefer propensities[12]. The data normalization made in the present study are based 
on the assumption that each feature is equally relevant for any protein sequence based analysis[9]. We also demonstrate  
that  despite the method, it was possible to classify the studied groups, pointing out the importance of the quality of the  
used data[49]. 

5 Conclusions

Our study indicates that linear epitopes that belong a single protein family share common properties but different when  
compared to epitopes from different families, as demonstrated for neurotoxins and metalloproteinases. We confirmed our 
hypothesis with five different data mining algorithms, probabilistic and non probabilistic, showing similar results except 
for Kmeans.  The proposed models  allowed to separate  the  studied  groups from random sequences based on Uniprot  
statistics.  The models based only in  PCP features  were enough  to show and  identify the differences between epitope 
groups. Therefore, we demonstrate that considering the epitope's protein family can reveal unseen patterns within epitope  
groups that could be used to improve epitope discovery.
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Aditional file 1:  The datasets composed of the sequences used in this work is available in this .csv file, containing four 
columns. First  column shows the pubmedID of the paper from which the sequence was extracted. The second column  
contains the sequence. The third collumn contain the sequence IDs from genebank, uniprot or pdb, databases. The fourth  
column contains the class of the sequences which can be neurotoxin, metalloproteinase or random. The column separator  
in this .csv file is a standart semicolon “;”.
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Journal_ID Epitope_sequence Class
21763377
21763377
21763377
21763377
21763377
16212890
16212890
16212890
16212890
16212890
20093370
19509157
15607634
15607634
16428330
16737347
16737347
16737347
16737347
16737347
16737347
16737347
19084031
19084031
17014879
17014879
17014879
18061641
18061641

7690110
9784249
9276446
9276446
9276446
9276446
9276446

22922018
22922018
22922018
22922018
22922018
22922018
22922018
22922018
11275260
11275260

9517541
9517541

21149386
21149386
22149274
22952786
22952786
22952786
19162253
16647121
16647121
16647121
16647121
16647121

Uniprot, PDB, genebank
SCMLDQGRSRCR P22796 metalloproteinase
HCTMDQGRLRCR P22796 metalloproteinase
HCFHDQGRVRCA P22796 metalloproteinase
TCATDQGRLRCT P22796 metalloproteinase
QCTMDQGRLRCR P22796 metalloproteinase
MEASHTHARPAP Q5C1N0 metalloproteinase
TLAHTSQIGLTA Q5C1N0 metalloproteinase
TSFGSMLSKWQK Q5C1N0 metalloproteinase
ITSHTGYLQLRL Q5C1N0 metalloproteinase
SNPPGMALSAPP Q5C1N0 metalloproteinase
GFEESLEVDTNPL P10845 metalloproteinase
YTFRYPLSL B3KQS8 metalloproteinase
IRIKRDMS  AAG32166 metalloproteinase
GTSMATPHVAG  AAG32166 metalloproteinase
IADCTYRWHVGTWMECSVSCGD Q76LX8 metalloproteinase
DVKCGRLYC (EOC0028-06-63-24),(EOC0063-24) metalloproteinase
GTICKMARGDNMHDYCN (EOC0028-06-63-24),(EOC0006) metalloproteinase
GTKCEDGKVC (EOC0028-06-63-24),(EOC0063-24) metalloproteinase
TECRGIRSECDLPEYCTGQ (EOC0028-06-63-24),(EOC0063-24) metalloproteinase
NCRDPCCDAASCKLHSW (EOC0028-06-63-24),(EOC0063-24) metalloproteinase
GEECDCGSPENCQ (EOC0028-06-63-24),(EOC0063-24) metalloproteinase
HNLGMNHDGNQCNCGAAGCIMSAIISQYRS (EOC0028-06-63-24),(EOC0028-06-63) metalloproteinase
HNLGMEHDGKDCL Q9I9R4 metalloproteinase
NTVNGFFRSMN Q9I9R4 metalloproteinase
SEGPSYEFSDCS P22796 metalloproteinase
LKTFGEWRERVL P22796 metalloproteinase
VVADHGMFTKYN P22796 metalloproteinase
IVNTLNEIYRYLYVR 2ERO(B);Q8JIR2 metalloproteinase
EQQRYLNNFRFIELV 2ERO(B);Q8JIR2 metalloproteinase
VKDGYIVD P01484;1AHO neurotoxin
KKYRYYLKPLCKK 1CLP neurotoxin
IVDDVNCTYFCGRNAYC 1AHO;P01484 neurotoxin
NEECTKLKGESGYCQ 1AHO;P01484 neurotoxin
ACYCYKLPDHVRTKG 1AHO;P01484 neurotoxin
YKLPDHVRTKGPGRCH 1AHO;P01484 neurotoxin
ACYCYKLPDHVRT 1AHO;P01484 neurotoxin
FTNPEEGDLNPPPEAKQVPVSYYDSTYLST 2ILP;Q7B8V4 neurotoxin
VPVSYYDSTYLSTDNEKDNYLKG 2ILP;Q7B8V4 neurotoxin
SPDFTFGFEESLEVDTNPLLGAGKFATDP 2ILP;Q7B8V4 neurotoxin
DFTFGFEESLEVDTNPLLG 2ILP;Q7B8V4 neurotoxin
KMLTEIYTEDNFVFFKVLNRKTYLNFDKAVFK 2ILP;Q7B8V4 neurotoxin
PKVNYTIYDGFNLRNTNLAANFNGQNTEINNMNFTK 2ILP;Q7B8V4 neurotoxin
FNGQNTEINNMNFTKLKNFTGLFEF 2ILP;Q7B8V4 neurotoxin
FNGQNTEINNMNFTKLKNFTGLFEFYK 2ILP;Q7B8V4 neurotoxin
KDLYG Q9TXD1, P08815 neurotoxin
NVKTSPKQSKP Q9TXD1, P08815 neurotoxin
KVWRDHRGTIIE 3NDS,1IQ9;P01426 neurotoxin
KPGI 3NDS,1IQ9;P01426 neurotoxin
YNQYTEEEK 2ILP;Q7B8V4 neurotoxin
YKKYSGSDK 2ILP;Q7B8V4 neurotoxin
WTLQDTQEIKQRVVF 2ILP;Q7B8V4 neurotoxin
SKWY 2NM1;P10844 neurotoxin
SDEFY 2NM1;P10844 neurotoxin
KSDP 2NM1;P10844 neurotoxin
NPVEWFMSTVNT 1CTX;P01391 neurotoxin
EENISLDLIQQYYLTFNFI 2ILP;Q7B8V4 neurotoxin
SGAVILLEFIPEIAIPVLG 2ILP;Q7B8V4 neurotoxin
TKAIINYQYNQYTEEENN 2ILP;Q7B8V4 neurotoxin
NKFLNQCSVSYLMNSMIPY 2ILP;Q7B8V4 neurotoxin
CMENNSGWKVSLNYGEIIW 2ILP;Q7B8V4 neurotoxin
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16647121
16647121
16647121
16647121
11425742

8576079
7945236
7945236
7945236
7945236

11602284
11602284
11602284
11602284
15302529
15302529
15302529
15970301
15970301
15970301
15970301
15970301
15970301
15970301
15970301

9022703
9022703
9022703
9022703
9022703
9276446
9276446
9276446
9276446

11750040
11750040
19962461
19962461

random peptide 1 random
random peptide 2 random
random peptide 3 random
random peptide 4 random
random peptide 5 random
random peptide 6 random
random peptide 7 random
random peptide 8 random
random peptide 9 random
random peptide 10 random
random peptide 11 random
random peptide 12 random
random peptide 13 random
random peptide 14 random
random peptide 15 random
random peptide 16 random
random peptide 17 random
random peptide 18 random
random peptide 19 random
random peptide 20 random
random peptide 21 random
random peptide 22 random
random peptide 23 random

GEIIWTLQDTQEIKQRVVF 2ILP;Q7B8V4 neurotoxin
NNIMPKLGCRDTHRYIWI 2ILP;Q7B8V4 neurotoxin
KYVDVNNVGIRGYMYLKGP 2ILP;Q7B8V4 neurotoxin
SRTLGCSWEFIPVDDGWGERPL 2ILP;Q7B8V4 neurotoxin
KGTFDPLQEPRT 2ILP;Q7B8V4 neurotoxin
TNCYKKRWRDHRGYRTE P60770 neurotoxin
CAPGQNLCY 1NTN;P01382 neurotoxin
PGQNLCYTK 1NTN;P01382 neurotoxin
KTWCDAWCG 1NTN;P01382 neurotoxin
DAWCGSRGK 1NTN;P01382 neurotoxin
LPDSEPTKTNGKCKS 2sn3;P15226 neurotoxin
GREGYPADSKGCKIT 2sn3;P15226 neurotoxin
TLKKGSSGYCAWPAC 2sn3;P15226 neurotoxin
PDSVKIWTSETNKCG 2sn3;P15226 neurotoxin
VPDHIKVWDYATNK 2sn3;P15226 neurotoxin
GLPDSEPTKTNGKCK 2sn3;P15226 neurotoxin
LPNWVKVWDRATNKC 2sn3;P15226 neurotoxin
KEGYAMDHEGCKFSC 2sn3;P15226 neurotoxin
CDGYCKTHLKASSGY 2sn3;P15226 neurotoxin
PDHIKVMDYATNKKC 2sn3;P15226 neurotoxin
KEGYLMDHEGCKLSC 2sn3;P15226 neurotoxin
IRPSGYCGRECGIKK 2sn3;P15226 neurotoxin
LPNWVKVWDRATNKC 2sn3;P15226 neurotoxin
KKDGYPVEYDMCAYI 2sn3;P15226 neurotoxin
WNYDNAYCDKLCKDK 2sn3;P15226 neurotoxin
GYIVDDV P01484 neurotoxin
IVDDVNC P01484 neurotoxin
LKGESGY P01484 neurotoxin
VKDGYIVD P01484 neurotoxin
YIVDDVN P01484 neurotoxin
IVDDVNCTYFCGRNAYC P01484 neurotoxin
NEECTKLKGESGYCQ P01484 neurotoxin
PDHVRTKGPGRCH P01484 neurotoxin
YKLPDHVRT P01484 neurotoxin
KELYGSSA P01484 neurotoxin
TSPKQCSKPC P01484 neurotoxin
GRNAYCN Q7YXD3 neurotoxin
YIVDDVNCT Q7YXD3 neurotoxin

UniprotKB HRMSMRIFLRFQPRP
UniprotKB FNYGKDATGASAPYS
UniprotKB GMELYTMVAMIWGAG
UniprotKB EAQGQLKREWKNAPF
UniprotKB SDNGSSEALYQSQLS
UniprotKB VDGPLMFFNFKTFPS
UniprotKB QSGWEEEEKTKERQV
UniprotKB EDPNSYVERRLGGVR
UniprotKB SAAAFIYLLASKSRQ
UniprotKB PSMAQPAAKAGSEEL
UniprotKB EISGAEVNDFTRKSI
UniprotKB EHAPSYAADVAQDVD
UniprotKB TYRSRNRTLPKDAAE
UniprotKB PAVGVKKATEQKTVD
UniprotKB IPSEWKFFIALIGVP
UniprotKB GVPMQEDTQAGYSVQ
UniprotKB IRRTDTINDIPMQCL
UniprotKB HGASGYDNEQVSGSK
UniprotKB SGDNAKAGKENTDGR
UniprotKB IKNRGIEFPTDAGGR
UniprotKB LMTWKERSVFDGTMD
UniprotKB GECQYDKQKPILTGC
UniprotKB VPSACDFVEGTSLGD
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random peptide 24 random
random peptide 25 random
random peptide 26 random
random peptide 27 random
random peptide 28 random
random peptide 29 random
random peptide 30 random
random peptide 31 random
random peptide 32 random
random peptide 33 random
random peptide 34 random
random peptide 35 random
random peptide 36 random
random peptide 37 random
random peptide 38 random
random peptide 39 random
random peptide 40 random
random peptide 41 random
random peptide 42 random
random peptide 43 random
random peptide 44 random
random peptide 45 random
random peptide 46 random
random peptide 47 random
random peptide 48 random
random peptide 49 random

UniprotKB QTVADEASLGHRTRA
UniprotKB SVVDNAAAKFKKGPA
UniprotKB RAARLPRKGVVYAFK
UniprotKB FRVNETYRIYPWYIG
UniprotKB IRSLLQGDIMRQLEQ
UniprotKB QVAIVRGLSGGERGV
UniprotKB VGPSLELSGSITVVI
UniprotKB IVYRQDGDQFPIYSS
UniprotKB IFKIVDKSLIRVMGN
UniprotKB LSAWGGAHYLGSGRS
UniprotKB ARTVLLTPRAGDLVI
UniprotKB RSSNYEFGDGMLKRL
UniprotKB LRRADGQKVVDAEAL
UniprotKB KMWIGSPQSDQLGQM
UniprotKB ANVPVLENSLKTTGN
UniprotKB FYKTVKLAEFDMETT
UniprotKB KFGFTNRLGEKSAGA
UniprotKB RVFDPSEISESWASQ
UniprotKB VAIVTAIERMSPSLF
UniprotKB YSEEAIAARKMMNRF
UniprotKB HPILELSYVPVVSLS
UniprotKB PAIGKSAVRRYFEVK
UniprotKB IASTMNPAVVFFKQY
UniprotKB GAASFTRLGSYANVG
UniprotKB ERKFLESKLIMDWKE
UniprotKB LGATALATNEATGTR
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README,
Viart Benjamin, benjamin.viart@gmail.com July 2015

WELCOME TO EPI-PEPTIDE DESIGNER 

1) Execution  

In the terminal, in the folder of the EPIDESIGNER.jar file execute : 

java -jar EPIPEPTIDE-DESIGNER.jar

2) Usage  

EPI-PEPTIDE DESIGNER can be used for two main purposes,
a) Compute graph representation of Antibody – Antigen interfaces from the 
     PDB and BLUE STAR STING server.
     
– Input : the input format is organized as follow :

PDB;CHAIN-A;CHAIN-B
where CHAIN-A correspond to the one letter code of the protein of one 
side of the interface form the PDB and CHAIN-B the corresponding one 
letter code of the other side of the interface.
In the folder you will find a file (allABAGinterface.txt) containing all the 
interfaces present in our databases.

– Options : Pajek or Gaston
Those option will modify the format of output of the graph

     
b) Generate EPI-peptides. EPI PEPTIDE DESIGNER can generate EPI-

PEPTIDES from a set of AB-AG interfaces, a putative or real epitope sequence 
and a score of similarity. 

- Input : the input format is organized as follow :
PDB;CHAIN-A;CHAIN-B
where CHAIN-A correspond to the one letter code of the protein of one 
side of the interface form the PDB and CHAIN-B the corresponding one 



letter code of the other side of the interface.
In the folder you will find a file (peptideInput.txt) peptide Antigen 

interfaces code to be used as input..
     !!! => THE DESIGN IS BASED ON FIRST SIDE DEFINED!!!
      ex : PDB;CHAIN-A;CHAIN-B design will be based on CHAIN-A 

                for  AB-AG interfaces the Antibody chain(s) comes first ! 
       1A3R;LH;P 

– Options : Epitope Sequence (Real or Putative) 
A sequence of epitope has to be define for EPI-PEPTIDE DESIGNER to 
base the design on. 
The sequence can contain any of the 20 Amino – Acids in the one letter 
format and '-' use in this case to create  non-linear sequence.
Ex: AFTG-GIMNCPLTR-RG

Size
      The Size indicate the size of the EPI-PEPTIDE to be generated.

Number
      The number of EPI-PEPTIDE to be generated

Score
       The score (expressed between 1 to 100) represent the importance of the 

inputed epitope sequence in the design of the EPI-PEPTIDES.
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