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“Since the measuring device has been constructed
by the observer ... we have to remember that what
we observe is not the nature itself but nature

exposed to our method of questioning.”

Physics and Philosophy [1958]
Wener Karl Heisenberg , 1901-1976.
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Resumo

z

Extrair padrdes de dados de sequéncias de proteinas é um dos desafios da Biologia
Computacional. Neste trabalho, é apresentada uma metodologia que usa técnicas de
Algebra Linear, Estatistica e Otimizacdo para a andlise de sequéncias primarias de
proteinas. Inicialmente, cada sequéncia é transformada num vetor de frequéncias de
peptideos de tamanho “p”, considerando todas as combinac¢des possiveis de aminoacidos
para formarem um p-peptideo. Com 20 aminoacidos, o0 modelo de espaco vetorial € formado
por vetores de tamanho 20°. Para avaliar a validade biolégica do método, medidas de
similaridade da SVD, distancia Euclidiana e cosseno, foram comparadas com medidas de
similaridade usadas por um programa de alinhamento de sequéncias (BLAST). A distancia
euclidiana foi negativamente correlacionada com bit score (r>-0,6) e positivamente
correlacionado com E value (r>+0,7). J& 0 cosseno apresentou correlagdo negativa com E
value (r>-0,7) e correlacdo positiva com bit score (r>+0,8). Foi obtida também uma estimava
para o grau de concordancia entre cosseno e distancia Euclidiana com o resultado gerado
por um programa padrdo de alinhamento de sequéncias, quando da classificacdo de uma
sequéncia desconhecida. Quanto a interpretacéo biolégica para a SVD, pode-se afirmar que
os valores singulares visualizados como scree plots revelam 0s principais componentes, o
namero de processos escondidos num banco de dados de sequéncias protéicas. Ao se aliar
a SVD com técnicas de otimizacao, foi possivel a visualizagcdo multidimensional de genomas
e de outros dados multivariados em 2D ou 3D. Ja a combinacdo de modelos de regresséo
logistica com SVD permitiu a selecdo de atributos importantes para a classificacdo de
sequéncias protéicas. A principal contribuicdo desta tese refere-se a validade bioldgica do
uso da decomposi¢do em valores singulares (SVD) para analise de similaridade e extracdo
de padrBes em sequéncias protéicas. Antes da realizacao deste trabalho, persistiam muitas
davidas em relacdo a significAncia biol6gica de se considerar uma proteina como um vetor
no espaco multidimensional e, principalmente, quanto a validade da andlise de similaridade
por meio de técnicas de Algebra Linear. Mesmo sem se trabalhar com matrizes de
substituicdo nem com algoritmos de alinhamentos de sequéncias, foram obtidos resultados
biologicamente vélidos. Descrever uma proteina na forma de um vetor permite que ndo so6 a
SVD possa ser usada na sua analise, mas todas as outras ferramentas utilizadas para a
manipulacdo de vetores e matrizes, da Algebra Linear, Fisica, Estatistica, Geometria,
Computacédo, também poderdo ser usadas na busca por similaridades e na extracdo de

padrBes em sequéncias protéicas.



Abstract

Extracting patterns from protein sequence data is one of the challenges of Computational
Biology. Here we use linear algebra methods and logistic regression models to analyze
sequences without the requirement of multiples alignments. Firstly, we consider a
biomolecular sequence as a complex written language that is recoded as p-peptide
frequency vector using all possible overlapping p-peptides window. With 20 amino acids is
generated a 20" high-dimensional vector, where p is the word-size. After that, singular value
decomposition (SVD) and/or logistic regression models are applied on data to extract
patterns or to allow visualizing of high dimensional data. Spearman correlation (r) was used
to evaluate the association between statistics used by BLAST and similarity metrics used by
SVD. Euclidean distance was negatively correlated with bit score (r>-0.6) and positively
correlated with E value (r>+0.7). Cosine had negative correlation with E value (r>-0.7) and
positive correlation with bit score (r>+0.8). In addition, we compared edit distance between
each pair of sequences with respective cosines and Euclidean distances from SVD.
Correlation between cosine and edit distance was -0.32 (P < 0.01) and between Euclidean
distance and edit distance was +0.70 (P < 0.01). Besides, the ability of SVD in classifying
sequences according to their categories was evaluated. With a 3-peptide frequency matrix,
all queries were correctly classified (accuracy = 100%). We proposed a biological
significance of the SVD: the singular value spectrum visualized as scree plots unreveals the
main components, the process that exists hidden in the protein database. A feature selection
for protein sequence classification was made by using logistic regression models and SVD.
In addition to the feature selection, combining logistic regression models with SVD allowed
better classification of unknown sequences than using SVD alone. We also presented a
method that utilizes information from known protein databases to build logistic regression
models that allow prediction of a new amino acids sequence. We successfully tested the
method in ten instances, which generated models for predicting insulin, globin, keratin,
cytochrome, albumin, collagen, fibrinogen and proteins related with cystic fibrosis, Alzheimer
disease and schizophrenia. SVD, followed by optimization allows visualization of high
dimensional genomes by mapping multivariate data from their high dimensional
representation into 2D or 3D space. All results found in this work and the characteristics
described are important because SVD can be a solution for the potential problems with
alignment algorithms and can be a substitute for those methods, for example, in whole

genome analysis.
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Introducao

Muitas ferramentas de Bioinformética tém como objetivo a deteccdo de padrbes em
sequéncias de proteinas ou de DNA, por meio de pesquisa de similaridades (Figura 1).
Estes padrbes, quando detectados, podem estar associados com a fungéo ou a estabilidade
estrutural da proteina, podem trazer informagBes sobre uma familia de genes ou serem
usados para descrever o relacionamento evolutivo de um grupo de sequéncias (GIBAS e
JAMBECK, 2001; HUNTER, 1993). Atualmente, a pesquisa de similaridade entre
sequéncias € o método mais poderoso para predizer a fungcdo de um gene desconhecido,
sendo a principal técnica usada na Biologia Computacional (HOLM e SANDER, 1998; LIU et
al., 2008; PERTSEMLIDIS e FONDON lII, 2001).

Seqiiéncias similares

Provavelmente,
compartilham da mesma
estrutura, tém enovelamento
semelhante

Provavelmente, tém o
mesmo ancestral comum,
tém a mesma origem

Provavelmente, tém funcgdo
biolégica similar.

Figura 1: Importancia da andlise de similaridades.

A maioria das andlises moleculares, inclusive a inferéncia filogenética, € baseada em
alinhamentos multiplos de sequéncias, com comparagfes caractere-a-caractere (KRAWETZ
e WOMBLE, 2003). Os alinhamentos par-a-par sdo realizados usando algoritmos altamente
sensiveis (mas computacionalmente intensivos) como Needleman & Wunsch
(NEEDLEMAN, 1970) e Smith-Waterman (1981) ou suas aproximacfes, baseadas em
heuristicas mais rapidas e menos sensiveis (HOCHREITER et al.,, 2006): FASTA
(PEARSON e LIPMAN, 1988) e BLAST, que se tornou, isoladamente, a peca mais

importante no campo da Bioinformética (KORF et al., 2003). Até o final de 2008, de acordo
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com o Google (www.scholar.google.com), o artigo original descrevendo o programa BLAST
(ALTSCHUL et al., 1990) ja foi citado 22.350 vezes.

Apesar da predominancia das analises usando alinhamento de sequéncias, a intencao deste
trabalho € usar uma alternativa para a deteccdo de padrdes em proteinas. Foram
implementados e validados algoritmos baseados na decomposi¢cdo em valores singulares —
SVD (DEERWESTER et al., 1990), um método que ndo requer alinhamentos mdultiplos de
sequéncias e permite a estimacdo da relacdo entre biomoléculas. O objetivo € apresentar
uma metodologia de analise que seja computacionalmente eficiente e biologicamente valida,
possibilitando a representacdo de proteinas, a extracdo de padrdes, a caracterizacdo e a
classificacdo de genes usando representacio vetorial de sequéncias. Além de usar Algebra
Linear, por meio da representacao vetorial de proteinas e aplicacdo da SVD, modelos de
regressao logistica e técnicas de otimizacdo também foram utilizadas em algumas etapas do
trabalho.
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Justificativa

Avaliar o quanto duas sequéncias protéicas sdo similares é uma questdo complexa. O
primeiro problema refere-se aos diferentes termos (mal) usados quando esta questdo é

analisada: identidade, similaridade e homologia.

Identidade de sequéncias existe quando exatamente o mesmo aminoacido ocorre nas
mesmas posicbes das duas sequéncias. Similaridade leva em conta pareamentos
aproximados e € significativa somente quando as substituicdes de aminoacidos ocorrem
entre aqueles com alta probabilidade de serem intercambidveis (em funcdo de semelhancas
de propriedades fisico-quimicas e da frequéncia de observacdo da prépria substituicdo na
natureza). A homologia ou o termo “sequéncias homologas” é mais importante dos trés ja
qgue refere-se ao fato das duas sequéncias compartilharem um ancestral comum no
passado. Quando duas sequéncias sdo homoélogas, além delas serem muito semelhantes
uma com a outra, elas ttm um relacionamento evolucionario, com ancestrais parecidos e
derivando de um mesmo ancestral (PERTSEMLIDIS e FONDON lIl, 2001). E importante
ressaltar que os dois primeiros termos, identidade e similaridade, sdo quantitativos e tém
diferentes formas de serem validados. J& a homologia é qualitativa, sendo muito vulneravel
a questionamento (KOSKI, 2001).

Os métodos padronizados para quantificar a similaridade entre duas proteinas utilizam
alinhamentos globais ou locais entre suas sequéncias primarias. O objetivo é encontrar o
alinhamento 6timo, quantificando-o por meio de alguma métrica. O algoritmo de Needleman
& Wunsch (NEEDLEMAN, 1970) usa programacdo dindmica para encontrar o alinhamento
global étimo, j& o algoritmo de Smith-Waterman (1981) usa a mesma técnica computacional
para achar o alinhamento 6timo local entre duas sequéncias. JA os programas FASTA
(PEARSON e LIPMAN, 1988) e BLAST (ALTSCHUL et al., 1990) utilizam heuristicas que
ndo garantem, com certeza, o alinhamento local 6timo, mas s&o rapidos (quando
comparados aos métodos exatos) e quase sempre atingem a otimalidade (KORF et al.,
2003; PERTSEMLIDIS e FONDON 1lI, 2001). Na verdade, apesar das semelhancas de
desempenho com o FASTA, atualmente o BLAST tornou-se ubiquo e de facto o programa
padrdo para a comparacdo de sequéncias (KANTOROVITZ, 2007; VINGA e ALMEIDA,

2003). O termo BLAST j& se tornou até “verbo” dentro da Biologia Computacional.
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Mesmo com bons resultados, métodos de deteccdo de padrbes de sequéncias protéicas
baseados em alinhamentos ainda apresentam problemas, tanto no algoritmo em si, devido a
complexidade computacional e outras questes, quanto no sistema de escores usados para
guantificar as possiveis substiuicbes de aminoécidos durante o alinhamento (Vinga e
Almeida, 2003).

A complexidade envolvida no processo de estimacdo do relacionamento de varias
biomoléculas de grande porte € enorme, ja que depende do tamanho das sequéncias
comparadas, o que dificulta a sua utilizacdo nos grandes bancos de dados (HOCHREITER,
2007). Por exemplo, para classificar as proteinas identificadas num genoma recentemente
sequenciado, os alinhamentos mais rapidos, feitos com o BLAST, levardo aproximadamente
um més para classificar os genes pertencentes a uma unica classe (HOCHREITER, 2007).
Em suma, métodos baseados em comparacdes caractere-a-caractere, para produzirem
alinhamentos em larga escala, tornaram-se impraticaveis, muito além da capacidade
computacional atualmente disponivel (STUART et al.,, 2002a; STUART e BERRY, 2004).
Com a geracdo de sequéncias completas de genoma em bancos de dados publicos,
contendo bilhGes de sequéncias de caracteres, torna-se crucial o desenvolvimento de
métodos efetivos para comparacdo e categorizagdo de genes, preferencialmente que néo
tenham tempo de processamento limitado ao tamanho da base de dados (WU et al., 1992).
Por exemplo, j& estdo disponiveis mais de 50 genomas completos de procariotos, 5
genomas de eucariotos (yeast, roundworm, fruit fly, human e A. thaliana) e mais de 160
genomas mitocondriais de vertebrados. O uso destes dados, com todas as sequéncias do

genoma, € muito dificil de ser feito por alinhamentos.

Uma outra consideracdo critica refere-se aos escores usados por algoritmos de
alinhamento: matrizes PAM (DAYHOFF et al., 1978) e BLOSUM (HENIKOFF e HENIKOFF,
1992). Estas solugBes heuristicas refletem incompletudes metodologicas na abordagem da
divergéncia de sequéncias e também refletem a suposi¢cdo de conservacao da contiguidade
entre seguimentos homologos. Isto torna dificil aos alinhamentos lidar com recombinacao
genética e genetic shuffling (VINGA e ALMEIDA, 2003).

Além disto, os algoritmos de alinhamentos sado intrinsecamente subjetivos e altamente
sensiveis a matriz de substituicdo usada, além de utilizarem pontos de corte (cut-off) e
penalidades de gap dificeis de serem definidos e que, quando alterados, podem produzir
resultados discordantes (KRAWETZ e WOMBLE, 2003; STUART et al., 2002a). De acordo
com Thorne (2000), o erro mais significante em filogenias moleculares deve-se a

alinhamentos incorretos. A confiabilidade nos resultados de multiplos alinhamentos é
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guestionavel, tanto que os programas que fazem esse processo automaticamente devem
ser considerados somente como um ponto de partida, necessitando de melhorias feitas
manualmente através de edi¢cdes (KRAWETZ e WOMBLE, 2003). Estas edi¢bes levam ao
descarte de parte da sequéncia original, fazendo com que a homologia postulada seja
restrita a poucos dominios selecionados (STUART et al., 2002a ; THORNE, 2000). Um outro
ponto refere-se ao fato de que alinhamentos também podem ignorar que sequéncias
dissimilares podem ter funcbes similares. “Proteinas com sequéncias diferentes (< 20% de
identidade) podem ter enovelamento muito similares, como exemplificado pelas globinas
carreadoras de oxigénio dos mamiferos, insetos e plantas” (STRYER, 1996): Hemoglobina
humana, Eritrocruorina de insetos e Leghemoglobina de nédulo de raiz . A deteccdo de
homologia remota, com baixo nivel de similaridade também é muito dificil de ser obtida

usando analise por alinhamentos (DONG et al., 2006).

Uma outra analise que também deve ser considerada nesta discusséo € a filogenia, que é a
reconstrucdo da histéria evolucionaria de uma colecdo de organismos ou o processo de se
desenvolver hipoteses sobre a relagdo evolutiva de organismos com base nas suas
caracteristicas observaveis. A andlise filogenética tenta descrever o relacionamento
evolutivo de um grupo de sequéncias de genes, proteinas ou genomas completos (GIBAS,
2001). Os estudos filogenéticos partem do pressuposto que todas as formas vivas da terra
(tanto as existentes hoje quanto as j& extintas) compartilham de uma origem comum, uma
provavel molécula replicadora. Consequientemente, todos 0s organismos vivos podem ser
relacionados através de padrdes de descendéncia, tendo um ancestral comum mais recente
ou antigo. Organismos proximamente relacionados descendem de ancestrais comuns mais
recentes, enquanto organismos mais distantemente relacionados possuem ancestrais
comuns mais antigos. Ja a filogenia de genes e proteinas néo trata da evolucdo do
organismo inteiro, mas de mudancas evolutivas em regifes codificantes especificas. Neste
caso, procura-se identificar qual a relacdo evolutiva entre uma familia de sequéncias dentro

de um Unico organismo ou entre diferentes organismos.

A filogenia de genes pode ser baseada em alinhamentos de sequéncias, entretanto,
métodos para producdo de filogenias baseados em multiplos alinhamentos de sequéncias
completas de genoma sdo impraticaveis pois demandam um enorme esforco computacional.
E interessante observar que, mesmo se fosse viabilizada tal analise (comparaco caractere-

a-caractere de genomas completos), haveria problema pois, muitas das sequéncias
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disponiveis contém uma alta fracdo de falsa similaridade ou homoplasia' resultante de uma
evolugdo estocdstica neutra, evolucdo convergente ou transferéncia horizontal de genes.
Determinar quais caracteres sdo homologias verdadeiras e quais séo fruto de homoplasia é
um problema dificil e geralmente € decidido somente quando as relagdes de ancestralidade
ja estdo estabelecidas (STUART et al., 2002a). A solucdo para esta questdo é a construcéo
de filogenias baseadas em dados de genomas completos e procedimentos para se medir a

similaridade de sequéncias sem a necessidade de alinhamentos.

Como alternativa aos alinhamentos, varios métodos para comparacdo de sequéncias e de
genomas completos, que nao utilizam explicitamente comparacdes de caracteres par-a-par,
tém sido propostos e praticados com sucesso (DONG et al.,, 2006; LIU et al.,, 2008;
RODRIGUES et al.,, 2004; SANDBERG, 1997; STUART e BERRY, 2003; STUART e
BERRY, 2004; STUART et al.,, 2002a; STUART et al., 2002b; TEICHERT et. al, 2007;
VINGA e ALMEIDA, 2003; WU et al., 1992; WU et al., 2007; YUAN et al., 2005). Na verdade,
a maioria dos métodos de analise de similaridade e detec¢cdo de homologia podem ser
divididos em 3 grupos (DONG et al., 2006): algoritmos de comparacdo par-a-par de
sequéncias (método padrdo); modelos generativos para familias de proteinas, usando
cadeias de Markov; classificadores discriminativos, usando exemplos positivos e negativos

de similaridade.

! Enquanto na homologia a similaridade é devida a um ancestral comum, na homoplasia, a
similaridade ocorre devido a evolugdo paralela, evolugdo convergente ou perda secundaria.
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Obijetivos

Objetivo geral

Apresentar uma metodologia de analise de sequéncias primarias de proteinas que seja
computacionalmente eficiente e biologicamente valida; representar proteinas por meio de
vetores e aplicar técnicas de Algebra Linear, Estatistica e Otimizacdo para a extracdo de

padrbes, a caracterizacao e a classificacdo de genes.
Objetivos especificos

1. Representar sequéncias primarias de proteinas como vetores de frequéncia de
peptideos.

2. Propor uma interpretagdo biolégica para a decomposicdo em valores singulares
(SVD), no contexto da analise de sequéncias protéicas.

3. Avaliar se medidas de similaridade da SVD, distancia Euclidiana e cosseno, estdo
associadas com a distancia global de edicdo e com medidas de similaridade usadas
por um programa de alinhamento de sequéncias.

4. Estimar modelos de regressao que utilizem, como variaveis explicativas, as métricas
de similaridade da SVD (distancia Euclidiana e cosseno), e, como variaveis resposta,
distancia global de edi¢cdo e medidas de similaridade usadas por um programa de
alinhamento de sequéncias.

5. Estimar o grau de concordancia entre cosseno e distdncia Euclidiana com o
resultado gerado por um programa padrdo de alinhamento de sequéncias, quando
da classificacdo de uma sequéncia desconhecida.

6. Identificar aminoacidos importantes para a classificacdo de uma determinada
categoria de proteina por meio dos vetores de frequéncia de aminoacidos.

7. ldentificar bipeptideos importantes para a classificacdo de uma determinada
categoria de proteina por meio dos vetores de frequéncia de bipeptideos.

8. Mapear a relacdo multidimensional de genomas e outros dados multivariados para o
espaco bi e tridimensional (2D e 3D), desenvolvendo mecanismos que permitam

identificar visualmente relacdes entre os elementos na representacdo proposta.



18

Resultados

Os resultados desta tese estdo apresentados em sete capitulos, cada um deles com artigos
gue tratam da representacédo vetorial de proteinas, que foram analisadas sem a necessidade
de mdltiplos alinhamentos. Inicialmente, cada sequéncia protéica foi transformada num vetor
de frequéncias de peptideos de tamanho “p”, considerando todas as combina¢des possiveis
de aminoé&cidos para formarem um p-peptideo. Com 20 aminoécidos, o modelo de espago
vetorial é formado por vetores de tamanho 20°. Decomposicdo em valores singulares (SVD)
e/ou modelos de regresséo logistica séo aplicados aos dados para extrair padrdes ou para

permitir a visualizagdo de dados multidimensionais.

O primeiro capitulo “Singular value decomposition (SVD) and BLAST: quite different
methods achieving similar results” (COUTO et al., 2011a), apresenta uma analise cujo
objetivo € mostrar como sequéncias primarias de proteinas podem ser codificadas como
vetores de frequéncia de peptideos, avaliando o significado bioldgico desta codificacdo. No
capitulo, medidas de similaridade da SVD, distancia Euclidiana e cosseno, sdo comparadas
com medidas de similaridade usadas por um programa de alinhamento de sequéncias
(BLAST). Correlacdo de Spearman (r) é usada para avaliar a associacdo entre estatisticas
usadas pelo BLAST e métricas da SVD. A distancia euclidiana foi negativamente
correlacionada com bit score (r>-0,6) e positivamente correlacionado com E value (r>+0,7).
Ja& 0 cosseno apresentou correlacéo negativa com E value (r>-0,7) e correlacao positiva com
bit score (r>+0,8). Neste mesmo capitulo, € feita uma estimava para o grau de concordancia
entre cosseno e distancia Euclidiana com o resultado gerado por um programa padrdo de

alinhamento de sequéncias, quando da classificacdo de uma sequéncia desconhecida.

O capitulo 2, “Application of latent semantic indexing (LSI) to evaluate the similarity of
sets of sequences without multiples alignments character-by-character” (COUTO et al.,
2007) apresenta uma visdo geral do método. Sequéncias foram comparadas usando a
distancia de edicdo entre cada par de sequéncias e respectivos cosseno e distancia
Euclidiana. A correlacdo entre cosseno e distancia de edi¢édo foi de -0.32 e entre distancia
Euclidiana e distancia de edicdo foi de +0.70. Além disto, a habilidade da SVD na
classificacdo de uma sequéncia de acordo com sua categoria também foi avaliada. Com

matrizes de tripeptideos todas as consultas foram corretamente classificadas.

O capitulo 3, “Unrevealing biological process with linear algebra: extracting patterns

from noisy data” (COUTO et al., 2011b), prop6e uma interpretacdo biolégica para a
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decomposi¢ao em valores singulares (SVD): os valores singulares visualizados como scree
plots revelam os principais componentes, o nimero de processos escondidos hum banco de

dados de sequéncias protéicas.

No quarto capitulo “Feature selection for protein sequence classification by using
logistic regression models and singular value decomposition” (COUTO et al., 2010a),
modelos de regressao logistica e SVD foram usados para a sele¢do de atributos importantes
para a classificacdo de sequéncias protéicas. Além da identificacdo de atributos, a
combinacdo de modelos de regressao logistica com SVD permitiu uma melhor classificacdo

de sequéncias desconhecidas do que quando isto era feito somente pela SVD.

O quinto capitulo, “Protein sequence retrieval system based on logistic regression
models” (COUTO et al.,, 2010b),apresenta um método que gera modelos de regresséo
logistica que permitem a previsdo de uma nova sequéncia de acidos aminados. Testamos
com sucesso 0 método em dez casos: insulina, hemoglobina, queratina, citocromo,
albumina, colageno, fibrinogénio e proteinas relacionadas com fibrose cistica, doenca de

Alzheimer e esquizofrenia.

O sexto capitulo “Genome Visualization in Space” (MARCOLINO et al., 2010), usa SVD e
Otimizagdo para a visualizacdo multidimensional de genomas em 2D ou 3D. O ultimo
capitulo “Visualizing high dimensional and multivariate data applying singular value
decomposition followed by optimization” (COUTO et al.,, 2010c), apresenta um artigo
similar ao sexto, no qual é feita uma abordagem que usa SVD e otimizacdo para mapear
dados multivariados de proteinas para representagdo multidimensional em espago 2D e 3D.
Tanto no sexto quanto no sétimo capitulos, foram desenvolvidos mecanismos cujo objetivo é
permitir que relacbes entre os elementos vetoriais multidimensionais, de conjuntos de

proteinas ou de outros dados, possam ser visualmente identificadas.
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Capitulo 1 — Decomposi¢cao em valores singulares (BYe

BLAST: diferentes métodos produzindo resultados seathantes



SINGULAR VALUE DECOMPOSITION (SVD) AND BLAST:
QUITE DIFFERENT METHODSACHIEVING SIMILAR
RESULTS

Braulio Roberto Gongalves Marinho Couto
Centro Universitario de Belo Horizonte / UNI-BH, ARrofessor Mario Werneck 1685, Belo Horizonte, Brazi
braulio.couto@unibh.br

Macelo Matos Santoro
Departamento de Bioquimica e Imunologia, UFMG, Awtonio Carlos 6627, Belo Horizonte, Brazil
santoro@icb.ufmg.br

Marcos Augusto dos Santos
Departamento de Ciéncia da Computacdo, UFMG, AwrintCarlos 6627, Belo Horizonte, Brazil
marcos@dcc.ufmg.br

Keywords: genomics; matrix analysis; BLAST; SVD.

Abstract: The dominant methods to search for releymtterns in protein sequences are based onotbalsy-
character matching, performed by software knowmBBAST. In this paper, sequences are recodep-as
peptide frequency matrix that is reduced by singwiaue decomposition (SVD). The objective is to
evaluate the association between statistics usdBLBST and similarity metrics used by SVD (Euclidea
distance and cosine). We chose BLAST as a standsalbe this string-matching program is widely used
for nucleotide searching and protein databaseseTtatasets were used: mitochondrial-gene sequyences
non-identical PDB sequences and a Swiss-Prot pratlaction. We built scatter graphs and calculated
Spearman correlatiorp) with metrics produced by BLAST and SVD. Euclidedistance was negatively
correlated with bit scorep$-0.6) and positively correlated with E valug>¢0.7). Cosine had negative
correlation with E valuep(>-0.7) and positive correlation with bit scorp>¢0.8). Besides, we made
agreement tests between SVD and BLAST in classifyimgtein families. For the mitochondrial gene
database, we achieved a kappa coefficient of Jopttte Swiss-Prot sample there is an agreemengehigh
than 80%. The fact that SVD has a strong corralatm BLAST results may represent a possible core
technique within a broader algorithm.

1 INTRODUCTION example, is inherently subjective and highly
sensitive to the substitution matrix used in cut-of

Comparison of protein sequences is one of the mostP0iNts and applied gap penalties, that are diffitul

fundamental issues in Bioinformatics. The dominant 9€finé and when altered, can produce contlicting
methods of such analysis are based on character- byf€Sults (Krawetz and Womble, 2003) and even
character matching, made by rapid but not Very_BLASTphemy When_u_sers are unable to interpret
sensitive algorithms with heuristics, known as IS results (Pertsemlidis and Fondon lIl, 2001).
BLAST — the basic local alignment search tool Database redundancy, very common in a large

(Altschul et al, 1990). Even with good performance, protein sequence collection, is another prob_Iem for
these methods still have difficulties, due to BLAST, slowing down searches and reducing the

computational complexity and other issues, as significance of an alignment because of the linear
problems with genetic recombination and genetic dependency of BLAST E value and the database size

shuffling (Vinga and Almeida, 2003). BLAST, for (Holmand Sander, 1998).



Several methods for comparing sequences andBLAST (Altschulet al, 1990) was cited over 23,000
complete genomes, which do not explicitly use times (ww.scholar.google.cojn
comparisons of character-by-character, have been
proposed and successfully applied as alternative to
alignments approaches (Wat al, 1992; Stuartet 2 SYSTEM AND METHODS
al., 2002; Stuart & Berry, 2004; Yuast al, 2005;
Dong et al, 2006; Teicheret. al 2007; Liuet al,
2008; Jun, S.Ret al., 2010). In this paper, proteins
are recoded as p-peptide frequency matrix that is
reduced by singular value decomposition (SVD), in
a latent semantic indexing information retrieval
system as described by Stuart (Stwerial, 2002)
and adapted by Couto (Coutd al, 2007). We first

2.1 Programsand datasets

Programs implemented for this analysis were written
in MATLAB (The Mathworks, 1996), using its
inbuilt functions (SVD, sparse matrix manipulation
subroutines etc). Three datasets were used in this
represented proteins as vectors and then calculated2Pe" The_flrst evaluated database had 64 vet&eb_ra
sequences similarities using linear algebra methods mitochondrial genomes ppmposed of 832 proteins
from 13 known gene families (ATP6, ATP8, COX1,

Figure 1 shows the 5|mp_lest case where protems.coxz, COX3. CYTB, ND1, ND2, ND3. ND4.
are represented as three-dimensional vectors (3D)

f : . . . ND4L, ND5 and ND6). This curated protein
requencies of Cystein, Alanine and Isoleucine are database was downloaded from the online
used to recode mitochondrial genes for four species information by Stuartet al paper (Stuaret al

It is interesting to notice that protein vectorsnfr y pap -

. : 2002). The file "pdb_seqres.txt.gz", located in
the same family (COX3 and COX2) point to the Y. L
same direction, which can be measured by the Cosinehttp.//bloserv.(pb§.|u35|eu.fr/PD,BX/vas the second .
among the vector angles (Eldén, 2006). database. This file has 121,556 redundant protein
sequences from PDB (Protein Data Bank), which
was reduced to 37,561 non-identical sequences. A
randomly sample of 40,000 sequences from the
Swiss-Prot section of the Universal Protein Resaurc
(UniProt) was the third protein collection

(http://www.uniprot.org/downloads

#lsoleucine

2.2 Vector representation of proteins

Before one can apply the linear algebra methods

Rystos T RL T e used here, it is necessary to represent proteins as
Figure 1: Representation of proteins as three-diinaak vectors in a high-dimensional Euclidean space.
vectors. Firstly, we consider a bio molecular sequence as

a complex written language, so its analysis can be

The first objective here is to assess the very similar to that used by Information Retrieval
relationship among similarity metrics from SVD, Systems, where large amounts of textual information
cosine and Euclidean distance, bit score and Eeyalu are organized, compared and categorized. In this
statistics used by BLAST. We applied a scatter case, individual protein sequences correspond to
graph analysis and Spearman’s rank correlations‘passage’ of text, whereas peptides of a given size
technique to do sopj. The second objective is to (p) serve as ‘words’ (Stuaet al, 2002). Hence,
verify if there is an agreement, when an unknown sequences are recoded as p-peptide frequency values
sequence is classified or identified, among SVD using all possible overlapping p-peptides window.
results and the “gold standard”, defined by thetmos With 20 amino-acids it is generated & 2 matrix,
similar BLAST hit. This was made by analysis of where p is the word-size and n is the number of
percent agreement, kappa coefficient, sensitivity, proteins to be analyzed. In these matrices, pretein
specificity and ROC curve (Altman, 1991). We are treated as documents and the p-peptides as,term
chose BLAST as a standard because this string-which allow the problem to be solved by linear
matching program “has become the single most algebra methods (Eldén, 2006).
important piece of software in the field of The amino-acid word-size p that can be used to
bioinformatics” and it is widely used for nuclesgi build the p-peptide frequency matrix varies frongon
searching and protein databases (Kairfl, 2003). to four. The utility of larger peptides is yet t@ b
According to Google, the first paper describing explored, but to use 5 or more amino-acids can be



result in computational problems. With five amino- linearly independent columns or rows of M). This is
acids the frequency matrix will be 3,200,000 rows, performed by many software, including MATLAB
most of that with zero. This structure is huge and (The Mathworks, 1996), used in this work. The
hard to handle. Besides computational issues, Harge matrix (U) is related to the p-peptides of the dataset,
peptides will lead to problem during the similarity whilst (V) is associated with the proteins studied.
search step. According to Stuart (Stweral, 2002), The central matrix§) contains the singular values
tripeptides may prove useful with highly diverged of (M) in decreasing order. These singular values are
sequences and tetrapeptides with highly relateddirectly related with independent characteristics
proteins. On the other hand, larger peptides will within the dataset. Actually, the largest valueg)f
remain real undetected similarity, even betweeny ver provide meaning of the peptides and proteins in the
highly related proteins. matrix (M). On the other hand, the smaller singular
Representing proteins as frequency vectors of p-values identify less significant aspects and thisyno
peptides has the limitation that it does not camisid inside the dataset (Eldén, 2006). The number of
the occurrences order of p-peptides in the sequencesignificant singular values from SVD analysis shows
Despite this possible ambiguity, several studiegha how many process or groups can be hidden in
shown that this approach is surprisingly effeciive  database.
discriminatory analysis of protein sequences (Vinga  For the sequence similarities analysis, instead of
and Almeida, 2003). Anyway, before using this using the original matrii, a rank reduction dfl is
protein vector representation, we made an analysisdone by using the k-largest singular value$/gfor
of its ambiguity rate according to the number of k-largest singular triplet),, S, Vi, where k <r. The
amino-acids (p) in the matrix of frequency protein- truncated matrixM, = U,S(V,)' has two main
peptide. We compared 26,675 non-identical proteinsadvantages. Reduced dimensionality makes the
longer than 100 amino-acids and selected from theproblem computationally approachable, which is
PDB dataset. To identify ambiguities during vector crucial in whole genome analysis. Besides, and very
recoding, we compared 355,764,475 sequencesimportant, the rank reduction improve accuracy of
pairs. The percentage of ambiguity felt from about protein matrix by discarding noise and reducing the
4%, when used only one amino-acid in the matrix of variability in p-peptide usage for the same protein
frequencies (p=1) to less than 0.5% in protein& wit family (Couto et al, 2007). The choice of k, the
two or more amino-acids. The percentage of number of singular values that must be used in the
uncertainty was calculated considering the numberreconstruction of the protein matrix after SVD, is
of different sequences with the coding for all critical and normally empirically decided. Ideally,
sequences that were compared pair-to-pair (26,675)the k factor or matrix dimension must be large
It is noteworthy that in all pairs with identicatetor enough to fit all the real structure in the datad a
coding, even among the 1,267 pairs with p=1, the small enough not to fit the sampling error or
protein involved was exactly the same, with minor unimportant details. In this work we used the
changes of amino-acids in some positions. This method proposed by Everitt and Dunn, that
happened because, before analysis, we removedecommends analyzing the relative variances of each
from the PDB database only sequences with 100%singular values. Singular values which relative
identity. We can say that the ambiguity is a variance is less than 0.7/n, where n is the nuraber
theoretical possibility in principle but not in ptie. proteins in the document-term matrix, must be
ignored (Everitt and Dunn, 2001).
2.3 Singular value decomposition

After the generation of the p-peptide frequency 3 RESULTS
matrix (M) representing each dataset with n
sequences, the matrix itself is subjected to SVD
(Deerwesteret al, 1990; Berryet al, 1995) and
factorized as M = USV Where U is the p x p
orthogonal matrix having the left singular vectofs
M as its columns, V is the n x n orthogonal matrix
having the right singular vectors of M as its

Firstly, we analyzed 620 sequences randomly

selected from the first database with mitochondrial

gene families. BLAST, actually bl2seq.exe program

with default parameters, were used to compare each
pair of sequence, which totalling 191,890

) . N comparisons. The same proteins were recoded as
columns, and S is the p x n diagonal matrix with th vectors in a high-dimensional space that was

singular values; > 0,> 03 ...> g, of M in order along reduced by SVD and analyzed according to the

its diagonal (r is the rank of M or the number of methods described by Couto (Cowtb al, 2007).



Scatter plots were built and suggested that Euatide
distance is negatively related with bit score, but
positively correlated with E value. For the cosime
found a negative association with E value and a
positive relationship with bit score. Those resalts

consistent because, the higher cosine, the more

similar are the two protein vector. The same happen
with BLAST bit score. As the E value, the smaller

Euclidean distance between the end points of two
protein vectors, the more similar are the sequences

Figure 2 and 3 presents respectively scatter graphs
between the bit score and cosine and between the bi

score and Euclidean distance.
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Figure 2: Scatter graph for mitochondrial gene sktta
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correlation with BLAST bit score.
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Figure 3: Scatter graph for mitochondrial gene sktta
Euclidean distance between protein vectors hagative
correlation with BLAST bit score.

For the second database, 27,361 non-identical

the first protein was compared with the secondj tha
was compared with the third and so on, which
totalled 27,360 comparisons. Figure 4 shows the
parameters used by bl2seqg.exe program analysis.

Cost to
opena
gap
G11

Cost to
extend
agap
-E1

Output
format:
tabular
D1

Substitution
matrix
-M BLOSUM62

Second
sequence
7S Bt

First
sequence
—iS_Atxt

BL2Seq
bl2seq

Program
-p blastp

Output file
-0S_AB.txt

blseq | <iS_Afxt S Bixt  -pblastp -MBLOSUMAS -GI3  -E2 | -DI | -oS ABixt

bl2seq —iS_Atxt | —S Bitxt | -pblastp -MBLOSUMS0  -G13 -0S_AB.txt

bl2seq  -iS_Atxt S Bixt | -pblastp -MPAM30 -G7 -0S_AB.txt

bl2seq  -iS_Atxt S Bixt | -pblastp -MPAMT0 -G7 -E2 D1 -0S_AB.txt

bl2seq | —iS_Aftxt = —jS Bixt | -pblastp -MPAM250 ETLIET D1 -08_AB.txt

Obs.: S Atxtand S B.txt are examples of sequence files.
Figure 4: BLAST parameters used in the PDB database.

We built scatter graphs and calculated Spearman
correlations ) among bit score and E value from
the most similar BLAST hit, respective cosine and
Euclidean distance from SVD (Figure 5). All plots
had the same shape that observed for the first
database. For BLAST analysis we also compared the
results obtained by applying different substitution
matrix: BLOSUM62, BLOSUM45, BLOSUMSO,
PAM30, PAM70 and PAMZ2050. The Euclidean
distance was negatively correlated with bit score
(p>-0.6) and positively correlated with E value
(p>+0.7). For the cosine we found a negative
correlation with E value p>-0.7) and a positive
correlation with bit scorep&+0.8). It is interesting
that the correlation between E value and bit score
was not exactly 1.0 because of rounding errors.

Besides the correlation analysis, we made an
agreement test between SVD and BLAST in
classifying protein families. For the mitochondrial
gene families database, we used a sample of 212
sequences from the 13 gene families as queries (tes
set), and the other proteins (620) were used to
generate the frequency matrix (training set): the
kappa coefficient between SVD and BLAST was 1.0
(agreement 100%). If we use the first three
significant singular values from the SVD analysis o
the thirteen gene families’ database, we can gémera
a three-dimensional graph showing how these genes
can be visualized in space (Figure 6). It is irggng
how the families are well separated in space, which
facilitates classification.

In another analysis, the 27,360 pair-to-pair
comparisons made by BLAST and SVD of the PDB
sequences, were evaluated in order to asses the
agreement of both techniques in detecting bioldgica
significance. The gold standard for a biological
significant alignment was defined by an E valueles

PDB sequences longer than 100 amino-acids werehan 0.05 obtained using BLOSUM62 as the

compared with BLAST and SVD. In this analysis,

substitution matrix (Pertsemlidis and Fondon llI,



2001). The area under the ROC curve (AUC) was significance similarity. When is used a cut-off of
estimated for both, cosine, Euclidean distance and0.90 for the cosine, the sensitivity and specifiiir
for the frequency matrix using one, two, three and detecting biological significance were, respectiyel
four peptides. The eight AUCs estimated were 72% and 94%.

higher than 0.80 (Figures 7 and 8), which indicates
good performance of SVD in detecting biological

——Euclidean distance (n_pep =1) area=0.85 - Euclidean distance (n_pep =2): area = 0.87
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Figure 7: ROC curve built when SVD Euclidean distance
is used to detect biological significant similarity
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Figure 8: ROC curve built when SVD cosine is used to
detect biological significant similarity.

Table 1: Two-way contingency table: cosine highent
0.90 between protein vectors has 72% sensitivity 496
specificity to detect biological significant similiges.

BLOSUM®62 Cosine bhiological significance?
';E biological
" significance? +) (=) Total
Yes 9,678 3,843 13,521
D No 808 13,031 13,839
Figure 6: Visualization of mitochondrial genes wgsithe
three first singular values from SVD: the 13 geamifies
are well separated in space, which facilitatessdiaation. Total 10,486 16,874 27,360

Table 1 summarizes the results when cosine

among protein vectors is used to detect a biolbgica  DUring the analysis of the third protein

collection, a sample of 40,000 Swiss-Prot sequences



was randomly divided into two groups: 9,953 example, SVD analysis can be very rapid, it dods no
proteins were selected as queries (test set), l@d t use any heuristics to asses an unknown sequesce, it
other 30,047 sequences (training set) were used tametrics are exact in a sense of direction and iposit
generate the frequencies matrix of SVD and to in a high-dimensional Euclidean space, it is not
become the BLAST database for evaluating the affected by database redundancy because of rank
queries. All 9,953 unknown proteins were analyzed reduction, its similarity metrics do not dependtba

by SVD and BLAST (actuallyblastall program database size, and any analyze does not need a
with default parameters) and results of both method substitution matrix nor gap penalties to produce
were compared in order to detect agreement. If thebiological significant results.

Swiss-Prot mnemonic protein identification code of An assessment of the singular value spectrum
the most similar BLAST hit was identical as that visualized ascree plot§Zhu and Ghodsi, 2006) can
obtained by a SVD analysis, so we had an unreveals the main components, the process that
agreement. When this happened, the matchedexists hidden in a database. This information can b
proteins are the same, from the same or differentused in many applications as clustering, gene
species. Table 2 presents the percent agreemengxpression analysis, immune response pattern
between BLAST and SVD: the results were good, identification, characterization of protein molemul
except when the p-peptide matrix is built by using dynamics and phylogenetic inference.

just one amino-acid as the word-size. SVD can be also used to visualize the
relationships between sequences and even whole
genomes, which can be essential to better analyze
complex systems and can be very helpful to
categorize genes or species in phylogeny.

Table 2: Agreement between SVD and BLAST for
classifying proteins from the Swiss-Prot dataset.

p-peptide|  SVD similarity | Percent agreement All results found in this work and the
matrix metric with BLAST characteristics described are important because SVD
p=1 _Cosine 20% can be a solution for the potential problems with
— Euclidean distance 3?% alignment algorithms and can be a substitute for
p=2 _Cosine 9% those methods, for example, in whole genome
Euclidean distance 82% analysis
p=3 Cosine 80% ’
Euclidean distance 82%
p=4 Cosine 69%
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ABSTRACT. Most molecular analyses, including phylogenetic in-
ference, are based on sequence alignments. We present an algorithm
that estimates relatedness between biomolecules without the require-
ment of sequence alignment by using a protein frequency matrix that
is reduced by singular value decomposition (SVD), in a latent seman-
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tic index information retrieval system. Two databases were used: one
with 832 proteins from 13 mitochondrial gene families and another
composed of 1000 sequences from nine types of proteins retrieved
from GenBank. Firstly, 208 sequences from the first database and 200
from the second were randomly selected and compared using edit
distance between each pair of sequences and respective cosines and
Euclidean distances from SVD. Correlation between cosine and edit
distance was -0.32 (P < 0.01) and between Euclidean distance and edit
distance was +0.70 (P < 0.01). In order to check the ability of SVD in
classifying sequences according to their categories, we used a sample
0f 202 sequences from the 13 gene families as queries (test set), and the
other proteins (630) were used to generate the frequency matrix (train-
ing set). The classification algorithm applies a voting scheme based
on the five most similar sequences with each query. With a 3-peptide
frequency matrix, all 202 queries were correctly classified (accuracy =
100%). This algorithm is very attractive, because sequence alignments
are neither generated nor required. In order to achieve results similar
to those obtained with edit distance analysis, we recommend that Eu-
clidean distance be used as a similarity measure for protein sequences
in latent semantic indexing methods.

Key words: Bioinformatics, Molecular comparisons, Sequence alignments,
Latent semantic indexing

INTRODUCTION

Many molecular analyses, including phylogenetic inferences, are based on character-
by-character comparisons (Krawetz and Womble, 2003). These standard methods use align-
ment algorithms that are intrinsically highly subjective and usually employ cut-off values and
gap penalties that are difficult to define (Stuart et al., 2002a). According to Thorne (2000), the
most significant error in molecular phylogenies is due to inaccurate alignments. Furthermore,
once an alignment is obtained, it is necessary to discard a fraction of the original sequences
compared, which restricts the postulated homology to a few selected domains (Thorne, 2000;
Stuart et al., 2002a). Besides the difficulties with the alignment algorithm itself, as whole ge-
nome sequences continue to accumulate in public databases, with billions of sequence char-
acters, effective methods for comparing and categorizing these genes are crucial. Actually,
the complexity involved in estimating relatedness between large numbers of biomolecules is
enormous, and methods based on character-by-character comparisons to produce large-scale
alignments become impractical, far beyond the scope of currently available computational sys-
tems (Stuart et al., 2002a,b; Stuart and Berry, 2003, 2004).

In this report, we present an algorithm to compare and to categorize genes that are
based on the methodology developed by Stuart et al. (2002a) for generating whole genome
phylogenies using vector representations of protein sequences. The algorithm estimates relat-
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edness between large numbers of biomolecules without the requirement of multiple sequence
alignment. The original method (Stuart et al., 2002a) uses a tool from numerical analysis, called
singular value decomposition (SVD), to process a peptide frequency matrix, a large sparse data
matrix in which each protein is uniquely represented as a vector. As the comparisons among
sequences are made by vector pairwise comparisons instead of sequence alignments, before
applying the proposed method, we analyzed the relationship between the vector properties (co-
sine and Euclidean distance values) and edit distance measures, which allowed the validation
of the methodology.

MATERIAL AND METHODS

A biomolecular sequence can be viewed as a complex written language, so that its
analysis can be very similar to that used by information retrieval (IR) systems, where large
amounts of textual information are organized, compared and categorized (Berry et al., 1999;
Stuart et al., 2002a). In the IR field, commonly used models are the boolean, vector space,
probabilistic model, and latent semantic indexing (LSI), which combine the vector space mod-
el with singular value decomposition (Coster, 1999).

The method proposed by Stuart et al. (2002a) to evaluate the similarity of sequences is
an LSI method, where individual protein sequences correspond to a “passage” of text, whereas
peptides of a given size serve as n-gram “words”. In this approach, protein sequences are re-
coded as p-peptide frequency values using all possible overlapping p-peptides (Stuart et al.,
2002a; Rodrigues et al., 2004). With 20 amino acids, a 20"p x n matrix is generated (20™p
rows and n columns or vectors, one for each n protein under analysis). For instance, by using
a tripeptide, there are 20”3 = 8000 possible peptides, and if 4 amino acids are used, there are
20™4 = 160,000 possible tetrapeptides. The simplest situation, illustrated by Figure 1, occurs
when only one amino acid is used for each peptide. In this case, the frequency matrix has only
20 rows and n columns, each one representing the protein vectors. These n vectors are com-
posed of the frequency of each amino acid in the protein (f1,1 = frequency of alanine in the first
protein). When all combinations of size 3 amino acids are used to build the matrix (Figure 2),
each vector has the frequency of each tripeptide in the protein (f1,1 = frequency of tripeptide 1
in the first protein). In these matrices, proteins are treated as documents and peptides as terms,
which allows the problem to be solved by information retrieval methods.

Programs and datasets

Programs implemented for this analysis were written in MATLAB (The Mathworks,
1996), using its built-in functions (SVD, sparse matrix manipulation subroutines, etc.). Two
datasets were used in this paper. The first database evaluated had 64 vertebrate mitochondrial
genomes composed of 832 proteins from 13 known gene families (ATP6, ATPS, COX1, COX2,
COX3, CYTB, ND1, ND2, ND3, ND4, ND4L, NDS5, and ND6). This curated protein database
was downloaded from the online information at http://mama.indstate.edu/users/stuart/gaspipe/
index.html from Stuart et al. (2002b).

The second database was composed of sequences from proteins retrieved from Gen-
Bank on April 19, 2006 (Figure 3). A random sample of 100 sequences was obtained of each

Genetics and Molecular Research 6 (4): 983-999 (2007) www.funpecrp.com.br



B.R.G.M. Couto et al. 986

Terms: amino Documents: proteins

acids Protein 1 Protein 2 Protein n
V1 = Alanine fi,1 f1,2 fi,n
V2 = Arginine f2,1 2,2 f2,n
V3 = Asparagine 3,1 3,2 f3,n
V4 = Aspartic acid f4,1 f4,2 f4,n
V5 = Cysteine 5,1 5,2 f5,n
V6 = Glutamine f6,1 16,2 f6,n
V7 = Glutamic acid f7,1 7,2 f7,n
V8 = Glycine f8,1 8,2 f8,n
V9 = Histidine f9,1 f9,2 f9,n
V10 = Isoleucine f10,1 f10,2 f10,n
V11 = Leucine fi1,1 fi1,2 fil,n
V12 = Lysine f12,1 f12,2 f12,n
V13 = Methionine fi3,1 f13,2 f13,n
V14 = Phenylalanine fi4,1 fi4,2 fi4,n
V15 = Proline fi5,1 f15,2 f15,n
V16 = Serine f16,1 f16,2 f16,n
V17 = Threonine fi7,1 f17,2 f17,n
V18 = Tryptophan f18,1 f18,2 f18,n
V19 = Tyrosine f19,1 f19,2 f19,n
V20 = Valine 20,1 20,2 f20,n

Figure 1. Protein frequency matrix built with 1-letter string of amino acids.

type of protein (globin, cytochrome, histone, cyclohydrolase, pyrophosphatase, ferredoxin,
keratin, and collagen) and 200 other proteins from lymphocytes and bacteriophages, totaling
1000 sequences.

Construction of the protein matrix

Terms, documents, queries, and weights are fundamental components of any IR sys-
tem (Coster, 1999). A term is an individual word or a phrase that reflects a particular concept or
key word (Berry et al., 1995). Terms are extracted from either the body of a text or a surrogate
text (e.g., abstract). In the context of biomolecular sequences, terms are the p-peptide strings
(usually, tripeptides or tetrapeptides). Documents are the text itself, composed of terms. Here,
proteins are the documents analyzed. The information needed by an IR user is called a query
(Coster, 1999). In this report, a query will be an unknown gene sequence whose category or
family we need to determine. A weight is a value reflecting the importance of a term in a docu-
ment or query (Coster, 1999). For this analysis, all terms (p-peptide) have the same weight,
assumed to be one. The elements of the term document or protein matrix are the occurrences of
each peptide (of size p) in a particular protein.
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Documents: proteins

Terms: all

peptides with 3

amino acids Protein 1 Protein 2 Protein n
ABC f1,1 f1,2 f1,n
ABD 2,1 2,2 £2,n
ABE 3,1 £3,2 £3,n
ABF f4,1 f4,2 f4,n
ABG 5,1 f5,2 f5,n
ABH f6,1 6,2 f6,n
ABI 7,1 7,2 7,n
AB] f8,1 f8,2 £8,n
ABL 9,1 f9,2 fo,n
ABM f10,1 10,2 f10,n
ABN 11,1 11,2 f11,n
ABO 12,1 12,2 f12,n
ABP 13,1 13,2 f13,n
ABQ 14,1 14,2 f14,n
ABR f15,1 f15,2 f15,n
ABS f16,1 f16,2 f16,n
ABT 17,1 17,2 f17,n
ABU f18,1 f18,2 f18,n
ABT 19,1 19,2 19,n

£8.000,1 £8.000,2 8.000,n

Figure 2. Protein frequency matrix built with 3-letter string of amino acids.

Type of sequence

Number of GenBank

sequences
Globin 1,958
Cytochrome 164,423
Histone 9,985
Cyclohydrolase 2,670
Pyrophosphatase 2,313
Ferredoxin 8,338
Lymphocyte 15,535
Bacteriophage 19,663
Keratin 459
Cellagen 2,922

Figure 3. Number of sequences retrieved from GenBank from different types of proteins.
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The document-term matrix construction is based on the protein sequences that are re-
coded as p-peptide frequency values using all possible overlapping p-peptides, which generates
the frequency matrix. Matrices are built using p =1, p=2, p =3, and p = 4 peptides. These sparse
matrices have dimensions of 20 x n, 400 x n, 8000 x n, and 160,000 x n, respectively, where n
is the number of sequences analyzed. A larger number of peptides is not used because it will
produce huge matrices, with more than 3 million rows (20”5 = 3,200,000 rows). The MATLAB
codes in Figure 4A and B build the protein matrix using sequence data in a text file, for example,
in a file named “mitgenes M.stu”. The first line of the file has the number of sequences to be
analyzed (n), and the other lines have the string sequences of each protein in the dataset.

It is important to note that, with four amino acids in the p-peptide, there will be 160,000
possible tetrapeptides in the protein matrix, most of which will have zero frequency. Actually,
the matrix produced by the algorithm 4A and B will be very sparse, which is computationally
good in terms of memory requirements.

Figure 5 shows the protein frequency matrix in the simplest case (variable n_pep = 1),
when the peptide is composed of only one amino acid. In this situation, we have 20 terms, and in
analyzing 5 proteins, the document-term matrix has 20 rows and 5 columns. The five proteins corre-
spond to 2 genes (COX3 and COX?2) from different vertebrate mitochondrial genomes. The original
amino acid frequency for each protein varies across each vector (columns of the protein matrix).

Latent semantic indexing

LSI, developed by Deerwester et al. (1990), is an IR method that uses singular value
decomposition and a vector space model to retrieve information (Orengo, 2004). In a vector
space representation of information, vectors that form a frequency term-by-document matrix, as
illustrated in Figures 1 and 2, are used to represent each document or proteins. The aim of LSI is
to perform the retrieval of a query in terms of conceptual content, rather than literally matching
terms (Deerwester et al., 1990; Berry et al., 1995; Orengo, 2004). Due to synonymy, where the
same concept can be expressed in many different ways, and polysemy, where a word can have
multiple meanings, in the traditional IR systems individual words provide unreliable evidence
about the meaning of the document (Orengo, 2004). To overcome the synonymy and polysemy
problems, LSI estimates the usage of terms across documents, revealing its underlying semantic
structure. Terms that occur frequently together are associated, which in practice means that a
query may retrieve documents which have none of the query terms (Deerwester et al., 1990).

In a mathematical way, synonymy and polysemy are solved by applying an SVD in
the term-by-document matrix, followed by a rank matrix reduction. After the SVD, the matrix
reduction is performed by replacing the original matrix with another that is as close as possible
to the original but whose column space is only a subspace of the column space of the original
matrix (Berry et al., 1999). The objective of breaking down the term-document matrix is to
remove extraneous information or noise from the original database.

SVD is performed by many software, including MATLAB (The Mathworks, 1996)
used in this study. Given a (m x n) term-by-document matrix M, the SVD of M is defined using
Equation 1 (Deerwester et al., 1990):

M =usv? (Equation 1)
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where U is the m x m orthogonal matrix having the left singular vectors of M as its columns,
V is the n x n orthogonal matrix having the right singular vectors of M as its columns, and S is
the m x n diagonal matrix with the singular values 61 > 62 > 62 ... > or of M in order along its
diagonal (7 is the rank of M or the number of linearly independent columns or rows of M).

A

n pep = input('HNumber of awmino acids in the p-peptide (1, 2, 3 or 4): 'j:
m = 20"n_pep;
MAT=sparse (o, n) ;

% Obhs.: "mitgenes M.stu™ iz an example of file with the protein sequences
archive = 'mitgenes M.stu!'

fid = fopen(archive, 'rt'):

n=fscanf(fid, '%d “n',1);

% building each protein wector
for i=1:n
fprintfi'‘n 36i of %4i',i,n);

[ protein] = fgetl(fid):

size = lengthiprotein);

column = 1i:

[MAT] =m0ntaHAT(HAT,protein,column,size,n_pep];
end

folose(£id) ;

function [HAT]=m0ntaHAT(HAT;protein,columﬁ:gize,n_pepj

amino acids = 'ACDEFGHIELMNFORITVWY' ;
terms = lengthiamino acids):

5 overlapping window of size n_pep
for k=1:({size-n_pep)
linse = 0O;:
for j=1:(n pep-1)
str = protein(k+j-1):
index = findstr(amino acids,str):

% calculating the peptide row in the protein matrix

line = line + (index - 1)%(terms”(n_pep-3jil:
end
Str = protein(k+n pep):;
index = findstriamino acids, str):

% calculating the peptide row in the protein matrix
line = line + index :
MAT(line,column) = HMAT(line,column) + 1:

end

Figure 4. A. Protein matrix construction subroutine (part I). B. Protein matrix construction subroutine (part II).
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Terms: amino Documents: proteins

acids Protein 1 Protein 2 Protein 3 Protein 4 Protein 5
COX3 COX3 COX3 COX2 COx2

V1 = Alanine 23 14 20 16 9

V2 = Arginine 1 2 1 3 3

V3 = Asparagine 5 4 4 13 12

V4 = Aspartic acid 8 7 7 14 12

V5 = Cysteine 24 23 23

V6 = Glutamine 19 21 18

V7 = Glutamic acid 18 16 16 10

V8 = Glycine 16 14 10 18 19

V9 = Histidine 4 3 2 4 5

V10 = Isoleucine 32 36 35 30 32

V11 = Leucine ) 2 11 8 16

V12 = Lysine 4 7 7 5 5

V13 = Methionine 12 11 12 14 11

V14 = Phenylalanine 6 7 7 7

V15 = Proline 5 5 5 5

V16 = Serine 18 21 15 21 21

V17 = Threonine 22 22 25 12 21

V18 = Tryptophan 14 15 18 18 11

V19 = Tyrosine 12 12 12 5 5

V20 = Valine 9 12 13 8 11

Figure 5. The 20 x 5-original protein matrix.

The rank reduction of M matrix is performed using the k-largest singular values of M, or
k-largest singular triplet U,, S, V,, where k <r. The truncated matrix M, is defined in Equation 2:

T T .
M =USVT & My = U SV (Equation 2)

The dimension of the vector in U, and V, is equal to k, the number of SVD factors
used. The extent of dimension reduction, i.e., the choice of &, will be detailed in the next
sections. This choice is critical, being an open issue in the literature and normally decided
via empirical testing (Deerwester et al., 1990; Berry et al., 1999). The truncated SVD has
two main advantages. Reduced dimensionality makes the problem computationally ap-
proachable, which is crucial in whole genome analysis. Besides, and very importantly,
rank reduction improves the accuracy of term-document or protein matrix by discarding
noise or variability in term or peptide usage, which can remove possible homoplasy in the
data (Stuart et al., 2002b). Another formula (Equation 3) to reconstruct the protein matrix,
based on the £ first singular values is:

k
Ay =35 vl .
=1 (Equation 3)
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Another advantage of rank reduction is the possibility of graphical analysis and data
visualization. Using the two first singular values (k = 2), the data can be analyzed by a 2-dimen-
sional (2-D) plot and, with 3 factors (k = 3), data can be visualized in a 3-D graph.

In Figure 6, we have the M protein matrix, reconstructed by using two SVD factors.
It is interesting to observe how the data variability, measured by the coefficient of varia-
tion, is reduced. The average coefficient of variation of the amino acid frequency for both
genes was reduced from approximately 15% in the original matrix to only 3% in the recon-
structed matrix. This reduction in variability is optimal for pattern recognition and clustering
(Schalkoft, 1992).

Terms: amino Documents: proteins
acids Protein 1 Protein 2 Protein 3 Protein 4 Protein 5
COX3 COX3 COX3 COX2 COX2
V1 = Alanine 19 19 19 12 12
V2 = Arginine 1 1 1 3 3
V3 = Asparagine 4 5 4 12 13
V4 = Aspartic acid 7 8 7 12 13
V5 = Cysteine 23 23 24
V6 = Glutamine 19 19 20
V7 = Glutamic acid 17 16 17
V8 = Glycine 13 14 13 18 19
V9 = Histidine 3 3 3 4 5
V10 = Isoleucine 34 35 34 31 31
V11 = Leucine 10 10 9 12 12
V12 = Lysine 6 6 6 5 5
V13 = Methionine 12 12 12 12 13
V14 = Phenylalanine 7 7 7 6
V15 = Proline 5 5 5 5 6
V16 = Serine 18 18 18 21 22
V17 = Threonine 23 23 23 17 17
V18 = Tryptophan 16 16 16 14 14
V19 = Tyrosine 12 12 12 5 5
V20 = Valine 11 11 11 10 10

Figure 6. The 20 x 5-protein matrix reconstructed with two factors.

Besides homogenizing the amino acid frequency in each gene by eliminating data
noise in COX3 and COX2 vectors, dimension reduction allows a data visualization of proteins
in a 2-D plot (Figure 7), with two separated clusters (G1 = COX3 and G2 = COX2, from verte-
brates A, B and C). The x-coordinate is obtained by multiplying the first column of the matrix V’
(from SVD) by the reduced S matrix, with only the two first singular values. The y-coordinate
is calculated by the multiplication of the second column of V' by the reduced S matrix, with two
SVD factors.
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Dimension reduction

As discussed before, the choice of &, the number of singular values that must be used in
the reconstruction of the protein matrix after SVD, is critical and normally empirically decided.
Ideally, the £ factor or matrix dimension must be large enough to fit all the real structure in the
data, and also small enough not to fit the sampling error or unimportant details. According to
Deerwester et al. (1990), the best performance of any IR system is achieved when the maxi-
mum number of singular values is less than 300.

In this study, we used the method proposed by Everitt and Dunn (2001), who recom-
mend the analysis of the relative variances of each of the singular values (v), calculated by
Equation 4. Singular values whose relative variance is less than 0.7/n, where n is the number
of proteins in the document-term matrix, must be ignored (Everitt and Dunn, 2001; Wall et
al., 2003).

2
v, = Si 3 i=123r
)
> 83 .
J (Equation 4)

where v, is the relative variance of the singular value S, from 7 singular values of the docu-
ment-term matrix. The idea is to use only the most significant singular values when the protein
matrix is reconstructed. For the 20 x 5-protein matrix in Figure 5, only two singular values are
significant (Figure 8). In this case, k must be equal to 2, which was done when the 2-D plot was
constructed (Figure 7).

20 T T T T T T

G2B @
15+ G248 @7

y-coordinates

GG @

®
10 ot e ]

e 1 1
70 Rt -6 -fid £2 60 A8 A6
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Figure 7. Two-dimensional plot of proteins for the 20 x 5 example.
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Relative variance

2 3 4 5
Singular value component

Figure 8. Relative variance plot of the 20 x 5-protein matrix of Figure 5.

Query retrieving algorithm

In the LSI information retrieval system built, it is possible to perform various com-
parisons: protein-by-protein, peptide-peptide, peptide-protein, and query-protein. Stuart et al.
(2002a,b) and Stuart and Berry (2003, 2004) use these comparisons to build gene and species
phylogenetic trees and to identify motifs.

Herein, the fundamental operation is the query-to-protein analysis, which allows the
classification of the unknown gene (query) in one of the protein categories of the database. In
this paper, the classification and retrieving algorithm applies a voting scheme based on the five
most similar proteins with the unknown gene.

Since the query is not part of the original protein matrix (M), its vector (¢) must be first
generated and projected into the same form as a protein vector. The algorithms in Figure 4A
and B can be used to generate the query vector ¢, which is modified according to Equation 5 to
become another LSI protein vector:

g=q"US™ (Equation 5)

To compute similarity between the query vector and each of the protein vectors, to re-
trieve the most similar proteins with respect to the unknown gene, we can use many measures
(Berry et al., 1995). The most often used similarity measures are the cosine of the angle and the
Euclidean distance between the vectors. Despite the fact that some authors have recommended
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cosine as the most effective similarity measure for text retrieval (Coster, 1999; Kuruvilla et al.,
2002; Orengo, 2004), we evaluated both measures for biomolecular sequence analysis.

The cosine of the angle between two vectors yields a value in the real range [-1.0,
+1.0]. If the cosine is close to 1.0, it means that both vectors are in the same direction. A nega-
tive value close to -1.0 means that the vectors are in the opposite direction.

Two vectors define two points in the space. The Euclidean distance measures the ab-
solute distance between the points defined by the vectors under comparison. This is a measure
of neighborhood between vectors. The higher the similarity is between the two vectors, the
smaller the Euclidean distance is.

The top five similar proteins with the query, by using either cosine or Euclidean dis-
tance, were used to define the category of the unknown sequence. This query is classified as a
gene from a family that includes # most of these five sequences. For example, if the five most
similar proteins with one query are from two different families A and B (Gene A, Gene B,
Gene B, Gene A, and Gene A, ordered by similarity with the query), the query is classified as
a gene from family A. This method was called the voting algorithm.

The standard methods for comparisons among sequences are based on character-by-
character alignments. Before applying the proposed LSI system, we analyzed the relationship
between the two similarity measures with the edit distance, obtained from global sequence
alignments using dynamic programming (Krawetz and Womble, 2003). In this way, it was pos-
sible to validate the method and to determine which similarity measure, cosine or Euclidean
distance, is better to produce results approximately equal to the edit distance values. A correla-
tion and a regression analysis (Neter et al., 1996) was performed to evaluate the relationship
among the three similarity measures.

RESULTS AND DISCUSSION

To assess the correlation between the cosines, the Euclidean distance and a sequence
alignment measure, 208 sequences from the first database and 200 from the second set were
randomly selected and compared by using the global edit distance between each pair of se-
quences and respective cosines and Euclidean distances. The protein matrix was generated with
tripeptide terms and reconstructed with 30 SVD factors (the definition of the number of SVD
factors followed the relative variance criteria; Equation 4). The pairwise analysis generated
41,428 similarity measures. Despite the fact that we worked with quite different methods (LSI
and global distance alignment), the correlation between the cosine and edit distance was -0.32
(P < 0.01) and between the Euclidean distance and edit distance was +0.70 (P < 0.01). These
results indicate that Euclidean distance is better than the cosine in determining the similarity
of sequences, when the objective is to achieve the same results as that observed with multiple
alignments character-by-character (Figures 9 and 10). Actually, the square root of the Euclid-
ean distance was better than the distance itself, with a Pearson correlation of 0.76 (Figure 10).

The negative correlation between the cosine and edit distance was expected. The high-
er the cosine of the angle between the two sequence vectors, higher the similarity was and,
consequently, the smaller the edit distance. The Euclidean and edit distances showed the same
behavior, and thus, the correlation was positive: the higher their values, the lower the similarity
was between the two sequences.
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Edit distance (obtained from global sequence alignments)
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Figure 9. Scatter plot of Euclidean distance and global edit distance.

Similarity measure Correlation
coefficient with Sij

Sij = global edit distance of the unknown gene sequence i 1.00
and protein sequence j

Cij = Cos(0) = cosine of the angle 0 between the query -032

vector q and the protein vector

Dij = Euclidean distance between the query vector q and 0.70
the protein vector

fij = wj[Tij 0.76

DCij = Cij Dy -0.43

Figure 10. Correlation coefficient (r) between each singular value decomposition similarity measure and edit
distance (Sij).

Despite the moderate correlation between Euclidean distance and edit distance
(r=+0.76), it is possible to fit a linear model to estimate edit distance according to the Euclid-
ean distance (Equation 6):

S;=50+69x /Dy (Equation 6)

where S;= edit distance (from a global sequence alignment), and D= Euclidean distance.
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After comparing SVD results with edit distance measure, we evaluated the ability
of LSI to classify the sequences according to their categories. A sample of 202 sequences
from the 13 gene families was randomly chosen as queries and the other proteins (630)
were used to generate the p-peptide frequency matrix. For the second database, 735 se-
quences were selected to build the training set (the p-peptide frequency matrix), and 265
proteins were randomly selected as queries or test set. Figure 11 shows the file format of
the original sequences from the first database. In Figure 12, we have part of the protein
matrix of these data in the simplest case, where only one amino acid is used in the p-pep-
tide term.

For both datasets, the protein frequency matrix was built by using the subroutines in
Figure 4A and B, and the SVD was applied in each matrix that was reconstructed by using a
number of factors defined by the relative variance analysis (Equation 4). The number of fac-
tors varied from 2 up to 56 (Figure 13). The advantage of the relative variance criteria is that

#Family  Gene and organism Sequence
1 COX3_Aame MAHQAHSYHMVDPSPWPIFGAAAALLTTSG...
2 COX2_Aame MANHSQLGFQDASSPIMEELVEFHDHALIV...
3 CYTB_Aame MAPNIRKSHPLLKMINNSLIDLPAPSNISA...
4 ND4_Aame MLKILPTIMLLPTTLLSPPKFLWTNTTMY...
5 ND5_Aame MNATLLINSLTLLTLATLLTPIVFPLLFKN...
6 ATP6_Aame MNLSFFDQFSSPYLLGIPLILLSLLFPALL...
7 ND3_Aame MNMLTFMFSLSLALSAILTALNFWLAQMTP...
8 ND2_Aame MNPHATPILVLSLMLGTTITISSNHWVLAW. ..
9 ATP8_Aame MPQLNPAPWFSIMIMTWLTLALLIQPKLLT...
10 ND1_Aame MPQMTMMSYLIMSLLYAIPILIAVAFLTLV...
11 ND4L_Aame MSPLHLSFYSAFVLSGLGLAFHRTHLVSAL...
12 COX1_Aame MTFINRWLFSTNHKDIGTLYLIFGAWAGMI...
13 ND6_Aame MTYFVFFLGVCFVWWGVLGVASNPSPYYGVV...
1 COX2_Ajam MAYPFQLGLQDATSPIMEELLHFHDHTLMI...
2 COX1_Ajam MFISRWFFSTNHKDIGTLYLLFGAWAGMVG...
3 ND4_Ajam MLKINPTIMLMPLTWLSNPKMIWINSTAH...
4 ND&_Ajam MMTYIVFVLSTIFVLSFVGFSSKPSPIYGG...
5 ATP6_Ajam MNENLFASFITPTMMGLPIVILIIMFPTIM...
6 ND5_Ajam MNLVSSMMLLSLMILSMPIMTTMLYPQNHP...
7 ND3_Ajam MNMAITLLTNTFLASLLVMIAFWLPQTNSY...
8 ND2_Ajam MNPIIFSMIMTTVILGTTIVMTSSHWLMWVVY...
9 ATP8_Ajam MPQLDTSTWFITILATILTLFIIMQLKIST...
10 ND4L_Ajam MSLTYMNMFMAFTISLLGLLMYRSHMMSSL...
11 COX3_Ajam MTHQTHAYHMVNPSPWPLTGALSALLLTSG...
12 CYTB_Ajam MTNIRKTHPLLKIINSSFVDLPAPSSLSSWV...
13 ND1_Ajam MYLMNLLTTIVPVLLAVAFLTLVERKILGY...

Figure 11. File format of the original sequence data from the first database.
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p-peptide terms Proteins

using one amino

acid (p - 1) COX3 COX2 CYTB ND4 ND5 ATP6 ND3 ND2 ATP8 ND1 ND4L COX1 ND& CQXZ CQX’I ND4

Aame Aame Aame Aame Aame Aame Aame Aame Aame Aame Aame Aame Aame Ajam Ajam Ajam

A 28 16 30 3 60 17 14 36 5 30 7 46 18 9 42 32
(o3 1 3 5 3 7 0 1 1 0 2 3 1 2 3 1 3
D 5 13 7 2 6 8 1 0 4 1 15 3 12 14 5
E 8 14 7 10 14 4 6 5 0 11 3 10 3 12 10 8
F 24 8 31 15 34 8 € 12 2 18 6 42 14 6 43 17
G 19 9 23 20 33 8 5 11 0 14 6 47 26 8 47 17
H 18 10 11 15 15 4 0 9 0 2 6 19 0 8 18 12
| 16 18 30 41 49 19 6 25 3 24 4 43 1 19 36 46
K 4 4 10 10 23 4 1 14 S 7 0 9 0 5 9 10
L 32 30 63 102 107 61 30 65 8 61 18 63 26 32 60 94
M <] 8 ! 25 31 10 4 18 3 18 7 25 6 16 29 34
N 4 5 21 11 25 9 2 13 2 10 3 15 1 5 17 20
P 12 14 29 28 il 17 7 24 10 25 4 30 4 11 29 23
Q 6 7 8 12 19 7 4 9 2 6 2 10 0 6 6 11
R 5 5 8 12 9 5 2 3 0 8 2 8 6 6 9 10
S 18 21 25 39 38 17 8 32 4 29 11 27 1" 21 30 35
T 22 12 25 48 63 20 6 35 10 17 8 S9 4 21 38 42
\' 14 18 18 10 20 8 1 15 0 17 5 33 36 11 40 12
w 12 5 11 12 12 5 10 5 8 1 17 5 5 17 14
Y 9 8 13 13 11 4 2 8 0 14 1 17 7 11 19 14

Figure 12. Protein frequency matrix of the first database (p-peptide = 1 amino acid).

dimension reduction is done according to the information in the protein matrix itself, instead of
using external data, as utilized by Stuart et al. (2002a). They used prior categorical information
concerning family memberships, which could be difficult for unknown sequences. According
to these authors, “the development of a procedure whereby optimal dimension can be ap-
proximated without reference to prior information would represent an important advancement”
(Stuart et al., 2002b). This is done by using the relative variance criteria.

Number of amino acids in 1st database (630 reference sequences) 2nd database (735 reference sequences)
the p-peptide terms
#SVD factors for the protein Size of the original protein #SVD factors for the protein Size of the original protein
matrix reconstruct frequency matrix matrix reconstruct frequency matrix

1 2 20x 630 2 20x 735

2 13 400 x 630 17 400 x 735

3 28 8,000 x 630 32 8,000 x 735

4 35 160,000 x 630 56 160,000 x 735

Figure 13. Dimension reduction according to the relative variance criteria. SVD = singular value decomposition.

In the first database, the best result was achieved with a 3-peptide frequency matrix
(size of 8000 rows and 630 columns), reconstructed by SVD with 28 terms: all 202 queries
were correctly classified into each of the 13 gene families, with 100% accuracy (Figure 14).

For the second database, 735 sequences were selected to build the p-peptide frequency
matrices, and 265 proteins were randomly selected as queries. By using a 3-peptide frequency
matrix (size of 8000 rows and 735 columns), reconstructed by SVD with 32 terms, we obtained
a global accuracy of 72% in classifying the 265 queries in one of the nine protein categories.
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Actual gene Classification of the gene query according to the voting algorithm
family
ATP6 ATP8 COX1 COX2 COX3 CYTB ND1 ND2 ND3 ND4 ND4L NDS ND6  Total
ATP6 18 18
ATP8 10 10
COX1 16 16
COX2 12 12
COX3 22 22
CYTB 16 16
ND1 14 14
ND2 16 16
ND3 13 13
ND4 18 18
NDA4L 16 16
ND5 15 15
ND& 16 16
Total 18 10 16 12 22 16 14 16 13 18 16 15 16 202

Figure 14. Cross classification table results of the first database.

We had 100% accuracy for cytochrome, 92% for histone, 85% for keratin, 80% for globin, 74%
for collagen, 66% for cyclohydrolase, 55% for pyrophosphatase, 52% for ferredoxin, and 65%
for other proteins (Figure 15).

Actual gene Classification of the gene query according to the voting algorithm
family

Collagen Cyclohydrolase Cytochrome Ferredoxin  Globin  Histone Keratin  Pyrophosphatase Other Total
Collagen 17 3 1 1 1 0 23
Cyclohydrolase 2 19 1 5 2 29
Cytochrome 21 0 21
Ferredoxin 1 1 14 3 8 27
Globin 1 1 1 16 1 0] 20
Histone 23 1 1 25
Keratin 1 23 1 0 27
Pyrophosphatase 5 2 3 1 17 3 31
Other 3 4 0 6 2 2 0 5 40 62
Total 24 30 21 26 24 29 23 34 54 265

Figure 15. Cross classification table results of the second database.

CONCLUSIONS

The algorithm and methods presented estimate relatedness between large numbers of
biomolecules without the requirement of multiple alignments. Proteins are recoded as p-pep-
tide frequency values using all possible overlapping p-peptides, which generates a matrix,
reduced by SVD.

The results show that the application of LSI to evaluate the similarity of sets of se-
quences is a promising method and very attractive, because sequence alignments are neither
generated nor required. In order to achieve results similar to those observed using edit distance
analysis, we recommend that Euclidean distance be used as a similarity measure for protein
sequences in LSI methods.
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In a randomly selected GenBank dataset, the results were very promising, with 72%
accuracy for classifying unknown gene queries in one of the nine protein categories. However,
in a curated protein database, the method was perfect in classifying the unknown genes accord-
ing to their actual category. Besides using the method in classification analysis, the informa-
tion retrieval system can be used to generate phylogenetic inferences by using whole genome
sequences and global data analysis.
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Abstract: Extracting patterns from protein sequethat is one of the challenges of computationdbbio Here we
use linear algebra to analyze sequences withoutetiigrement of multiples alignments. In this stuthe
singular value decomposition (SVD) of a spapspeptide frequency matrix (M) is used to detect and
extract signals from noisy protein daftd € USV'). The central matrix S is diagonal and contatms t
singular values of M in decreasing order. Here we gense to the biological significance of the S\t
singular value spectrum visualized seeplots unreveals the main components, the prodegsekists
hidden in the database. This information can bel uisenany applications as clustering, gene exprassi
analysis, immune response pattern identificatidmaracterization of protein molecular dynamics and
phylogenetic inference. The visualization of simgulalue spectrum from SVD analysis shows how many
processes can be hidden in database and can lédgibis to detect and extract small signals fraisy
data.

1 INTRODUCTION of using alignment analysis, the approach appbed i
based on linear algebra algorithms, similar to that

Many bioinformatics tools are designed to detect used in systems for information retrieval in large
. . . ™
patterns in protein or DNA sequences by using textual databases and by Google™ web search

statistically based sequence similarity methode Th €ngine. The ideas and linear algebra methods
patterns detected can be associated with the &mcti @PPlied here are important in several areas of data
or structural protein stability, can predict family Mining, pattern  recognition  (for example,
genes or can be used to describe the evowingclassﬁmatlon of hand-written digits), and PageRan
relationship of group sequences (Hunter, 1993). computations for web search engines (Eldén, 2006).
Such bioinformatics predictions help experimental OUr objective is to use singular value decompasitio
determination simpler and more efficient (Kirg - SVD (Berrye_t al, 1995) of a sparse _tnpeptlde
al., 2001). However, to evaluate how two proteins fre_quency matrix to detect and extract signals fror_n
are similar is a complex issue. The standard method N0y Protein data. Such analysis, when done in
quantify the similarity between two proteins using MICr0 array gene expression data, associates the
global or local alignments with their primary number of the most significant singular values from
sequences. The goal is to find the optimal aligrmen SYD Wwith the ‘gene groups and the cell-cycle
quantifying it by some metric. In this work, instea  Structure (Walkt al, 2003).



We will analyze the singular value spectrum to tripeptide window. With 20 amino-acids it is
visualize them and to unreveal the main generated a matrix M (8,000 x n), where n is the
components, the number of process that existsnumber of proteins to be analyzed. After the
hidden in the database. More specifically, as angeneration of the tripeptide frequency matrix (M),
application of SVD, we want to show that the the matrix itself is subjected to SVD (Deerwester
number of the most significant singular values is al., 1990; Berryet al, 1995) and factorized as M =
associate with the number of protein families in a USV'. Where U is the p x p orthogonal matrix
sequence database. Such prediction can be used ihaving the left singular vectors of M as its colignn
phylogenetic inference, data mining, clustering etc V is the n x n orthogonal matrix having the right
making experimental tests more efficient, and singular vectors of M as its columns, and S ispthe
avoiding randomly determination for possible n diagonal matrix with the singular values= o, >
outcomes. o; ... 2 ¢, of M in order along its diagonal (r is the

rank of M or the number of linearly independent

columns or rows of M). These singular values are
2 SYSTEM AND METHODS directly related to independent characteristicdiwit

the dataset. Actually, the largest values of (S)
Programs implemented for this analysis were written provide the meaning of the peptides and proteins in
in MATLAB (The Mathworks, 1996), using its the matrix (M)'. On_the othe_r hgnd, the smaller
inbuilt functions (SVD, sparse matrix manipulation singular values identify less significant aspeatd a

subroutines etc). Four datasets were used in thisthe n0|sy|nS|de the datase.t (Elden_, 2006). .
In this work our focus is only in the matrix (S)

paper. The first evaluated database had 64 vetéebra o )
mitochondrial genomes composed of 832 proteins and its diagonal valuesXshat make up the singular

from 13 known gene families (ATP6, ATP8, COX1 value spectrum. The magnitude of any singular
COX2 COX3 CYTB. ND1 ND2’ ND3’ ND4 " value is indicative to its importance in explainimg

ND4L, ND5 and ND6). This curated protein data (Wallet al, 2003). Then, the objective here is

database was downloaded from online information LO Ivlstl)J_aII|ze_ tthet5|3_gular vame spe_ctrum as pllmﬁ tth
by Stuartet al paper (Stuartet al, 2002). The €Ip biologists to discover tne main components,

second database was composed by sequences frofprocess, and th_e .groups hidden in the database. Two
proteins retrieved from GenBank in 19/04/2006slt i graphs were built: . . .

a random 100 sequences sample of each protein a) th? scrfee plotr,] (;N'thb 25 'blgger singular
type: globin, cytochrome, histone, cyclohydrolase, b vr?ues or ‘Tac_ atalage, .
pyrophosphatase, ferredoxin, keratin and collagen ) the cumu ative relative varla.nce v
and 200 other proteins, totalling 1,000 sequences captured by thf 'th‘s”;‘gu'ar V"’T'“e-_

from ten different types of genes. The third dasaba Vi = 1- (S§)72(SJ5 § = ith-singular
was the file "pdb_segres.txt.gz", located in value;k=1,2, .. n.
http://bioserv.rpbs.jussieu.fr/PDB/ This file has The visual examination of thscreeplot looks
121,556 redundant protein sequences from PDBfor a “gap” or an “elbow” that indicates how many
(Protein Data Bank), which was reduced to 37,561 significant singular values exist in database. Afte
non-identical sequences. From this file we recavere the “gap” there is no significant value. The second
all sequences related to six types of enzymes:graph helps to understand how much variance is
Ligase, Isomerase, Lyase, Hydrolase, Transferaseexplained by each singular value. Despite the effor
and Oxidoreductase, which totalled 10,915 proteins. for automatic analysis, graphic visual inspectith s
We also recovered a sample of 219 globins from theis one of the most commonly used in practice for
PDB file that was used as another test set. Besidesdimensionality selection (Zhu and Ghodsi, 2006).
we extracted 86 sequences of haemoglobin alpha-

chain and a sample from the PDB file with all

sequences higher than 47 amino acids (31,9063 RESULTS

proteins from several types of genes). Each of the

above sequence files was analyzed by MATLAB \when there is only one specific type of protein in
subroutines that generate twelve tripeptide sparsedatabase, as haemoglobin alpha-chain, the singular
matrices as described by Stuart (Stedral, 2002)  value spectrum obtained shows a “big gap” after the
and adapted by Couto (Coutbal, 2007). first eigenvalue (Figure 1.1). Such result is
Al sequences were recoded as 3-peptide confrmed by the second graph (Figure 1.2) that
frequency values using all possible overlapping indicates more than 90% variance is explained by




the first singular value, which is compatible witte
database itself. For the globin matrix (Figures 2.1 |
and 2.2) is more difficult to define exactly whehe
“gap” or “elbow” is, because there are more than sof-
one type protein in database. However, the
objective here is not to be very precise, but
sufficiently accurate to help biologists in findimag

interval with the number of process or groups that
exists hidden in the database. Such predictiond nee
validation by experimental determination that
becomes simpler. In the globin database for o
example, is reasonable to define between one and
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Singular value
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three groups that explains about 60% of the vaeianc o5 . m - p .
in database (Figure 2.2). After the third singular Fank

value there is stability in the singular value speun : i L

(Figure 2.1). Figure 1.1: Scree plot showing singular values of

For the database with 13 mitochondrial genes haemoglobira-chain database.

(Figures 3.1 and 3.2) it is possible to define the
number of groups around 10: after this interval the 1 f,é.f
singular value spectrum stabilizes and there is o} 1
between 50% and 60% explained variance. When
the GenBank matrix is analyzed, with ten different
types of genes, it is necessary carefully combine
both graphs. Despite the fact that there is a “gap”
after the sixth singular value (Figure 4.1), the
variance explained until this point is only aboQ&#
(Figure 4.2). The interval between 10 and 15
singular values corresponds to about 50% of redativ
variance and the spectrum becomes flat.

The PDB database, with more then 31,000 oLr 7
proteins from several types of genes, presents a o L - L - .
singular value spectrum where is necessary more Snadarvalee
than 20 eigenvalues to explain about 30% of
variance. There is an “elbow” between the second
and third singular value (Figure 5.1) that is
insufficient to explain most data (Figure 5.2).
Similar result is obtained with the PDB enzymes w2of
database that apparently had only 6 types of
proteins. The visual analysis of the scree plot and  °f
cumulative variance graph (Figures 6.1 and 6.2)
suggest more than 25 groups hidden under the six e
enzymes denomination. This is a clue, a possibility
that should be analyzed by another bioinformatics
tool.

Table 1 summarizes the visualization of all
singular value spectrums for each database, plotted
in the Figures 1.1 to 6.2. The suggested numbers of  =f
significant singular values for each dataset is
coherent, except the enzymes database, which seems o
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to be actually formed by several quite different ank
sequences. SVD analysis unreveals biological
motives associated with biological processes and
other biological properties in each dataset.

Figure 2.1: Scree plot showing singular values lobig
database.



-

o
©

o
®
T

o
3
T

o
>
T

Relative variance (cumulative value)
o o o
R
T T T

o
o
T

o
[
T

5 10 15
Singular value

20

25

Singular value
-
5
2

100

Rank

Figure 2.2: Cumulative relative variance of globin Figure 4.1: Scree plot showing singular valuesashple

database.

-
@
8

Singular value

100

Figure 3.1: Scree plot showing

Rank

mitochondrial genes database.

singular values of

o
©
T

o
©
T

o
3
T

o
>
T

Relative variance (cumulative value)
o o o
I
T T T

o
N
T

o
i
T

5 10 15
Singular value

20

25

Figure 3.2: Cumulative relative variance of mitoctioal
genes database.

genes from GenBank.

e
3

o
>
T
I

Relative variance (cumulative value)
s o
2 3
:
;

o
@
T
I

021 —

0 L L L L
0 5 10 15 20 25

Singular value

Figure 4.2: Cumulative relative variance of sampémes
from GenBank.

Singular value

300

Rank

Figure 5.1: Scree plot showing singular valuesapidiom
PDB sequences dataset.



-

o
©

o
®
T
I

o
3
T
I

o
>
T
I

Relative variance (cumulative value)
o o
= o
T T
i

o
w
T

0.2

01f . -

0 5 10 15 20 25
Singular value

Figure 5.2: Cumulative relative variance of randoBBP
sequences dataset.

Singular value
MooN w @ s » o
8 ¥ 8 & &8 & 8
s & 8 & 8 & 8
7 T
. .

=
@
3

=
S
3

0 5 10 15 20 25
Rank

Figure 6.1: Scree plot showing singular values BBP
enzymes database.

o
©

o
®
T
I

o
3
T
I

o
>
T
I

Relative variance (cumulative value)
°
&
T

0 5 10 15 20 25
Singular value

Figure 6.2: Cumulative relative variance of PDB aneg
dataset.

4 CONCLUSION

A biologist could ask: “What is the biological
significance of the SVD?” We answered this
question: the visualization of singular value
spectrum from SVD analysis shows how many
process can be hidden in database. The singular
value plot is a suggestion, a clue that helps bists
to detect and extract small signals from noise.data

Table 1: Suggested number of significant singutdnes.

Suggested numbe
Predefined| singular values
Dataset # groups Min Max
Haemoglobim-chain 1 1 1
Globin 1 1 3
Mitochondrial genes 13 9 15
GenBank 10 10 15
PDB sequences Several > 20
Enzymes 6 > 25
REFERENCES

Berry, M\W. et al, 1995. Using linear algebra for
intelligent information retrieval. SIAM Review, 37,
573-595.

Couto, B.R.G.M.et al, 2007. Application of latent
semantic indexing to evaluate the similarity ofsset
sequences without multiple alignments character-by-
character. GMR, 6(4), 983-999.

Deerwester, Set al, 1990. Indexing by Latent Semantic
Analysis. Journal of the American Society for
Information Science, 41(6), 1-13.

Eldén, L., 2006. Numerical linear algebra in dataing.
Acta Numerica, 327-384.

Hunter, L., 1993. Artificial Intelligence and Molger
Biology. American Association for Artificial
Intelligence, MIT Press, Cambridge.

King, R.D. et al, 2001. The utilty of different
representations of protein sequence for predicting
functional class. Bioinformatics, 17(5): 445-454.

Stuart, G.W.et al, 2002. Integrated gene and species
phylogenies from unaligned whole genome protein
sequences. Bioinformatics, 18(1), 100-108.

The Mathworks, 1996. MATLAB: mathematical
computation, analysis, visualization, and algorithm
development (version 5.0). Natick, Massachusetts,
USA.

Wall, M.E. et al, 2003. Singular value decomposition and
principal component analysis. In: Berrar, D.P. et al
(eds.), A practical approach to microarray data
analysis, Kluwer, Norwell, pp. 91-109.

Zhu, M. and Ghodsi, A, 2006. Automatic dimensiotyali
selection from the scree plot via the use of peofil
likelihood. Computational Statistics and Data
Analysis, 51, 918-930.



52

Capitulo 4 — Usando modelos de regresséao logistiea
decomposicao em valores singulares para a selec@atributos

importantes para classificacdo de sequéncias protéis



Feature selection for protein sequence classificati on
by using logistic regression models and singular
value decomposition

Braulio RGM Couto™*"3, Marcelo M Santoro®, Amjad Ali*, Marcos A Santos™

'Programa de Doutorado em Bioinformatjdaniversidade Federal de Minas Gerais,
UFMG, Belo Horizonte, Minas Gerais, Brasil

’Departamento de Ciéncias Exatas e Tecnold@entro Universitario de Belo
Horizonte, UNI-BH, Belo Horizonte, Minas Gerais aBil

3Departamento de Bioquimica e Imunoladi#*MG, Belo Horizonte, Minas Gerais,
Brasil

“Laboratory of Molecular and Cellular Genetics (LG;MDepartamento de Biologia
Geral, ICB/UFMG UFMG, Belo Horizonte, Minas Gerais, Brasil

®Departamento de Ciéncia da ComputacBi&MG, Av. Antonio Carlos 6627, Belo

Horizonte, Minas Gerais, 31270-010, Brasil

*These authors contributed equally to this work

SCorresponding author

Email addresses:

BRGMC: braulio.couto@unibh.br

MMS: santoro@icbh.ufmaq.br

AA: amjad uni@yahoo.com

MAS: marcos@dcc.ufmg.br




Abstract

Background
Searching for relevant patterns in protein sequeimgea critical Bioinformatics goal.

In this work we will present a computational tool gupport genomic research that
uses logistic regression models and singular vaeemposition to feature selection
and protein sequence classification. Firstly, wesoder a biomolecular sequence as a
complex written language that is recodedpaseptide frequency vector using all
possible overlapping-peptides window. With 20 amino acids it genera &€ high-
dimensional vector, where p is the word-size. Bagttor row is the peptide that is
analyzed by logistic regression to feature selactfor the protein sequence
classification. If we use a word-size windop~() one of the features analyzed, the
amino acids are important for a group of proteidéith p=2 we can identify
bipeptides associated with a specific sequencegpgiBesides peptides we include
sequence length as another feature candidate. Takelfhuilding strategy for the
feature selection was an automatic forward stepuagestic regression. After the
feature selection step, proteins are recoded awdin by thep-peptides selected as
important for each sequences group. The rank of pitmeein frequency matrix
produced for each target group is reduced by sangudlue decomposition (SVD) and
the results are used to classify unknown sequengeslatabase with 516,081
sequences from the Swiss-Prot section of the Usavdprotein Resource (UniProt)
was the protein collection used in all analysis. ¥#&&ted the method in seven target
groups: insulin, globin, keratin, cytochrome andtpmns related with cystic fibrosis,
Alzheimer disease and schizophrenia. A case-costuoly was done to examine each
target group. In this approach, sequences fronatiget group (the cases) are selected

from database for comparison with series of randenuences where the protein is



absent (the controls). For all groups, availablenber of cases in database is fixed
and restricted, much smaller than the number ofrots In order to try an optimal
allocation of cases and controls during each feasetection analysis, we used a 1:4
case: control ratio. The ratio of four random colstito each case (4:1) compensates
few numbers of cases, being enough to detect fesmatetated to each protein group.
Results

Combined method was able to identify the amino saeidd bipeptides important to
each protein group. Sensitivity to classify unknoseguences using the SVD system
based on the initial matrix with 400 rows, rangseahf 76% for proteins related with
Alzheimer disease and more than 90% for other ums. All specificities were over
90% for all proteins. After frequency matrix rectastion using only bipeptides
identified by the logistic regression, decompositisy SVD and subsequent rank
reduction, query retrieval has a sensitivity ragdgirom 74% for cytochrome to more
than 90% for globin, keratin and proteins rela@eaystic fibrosis and schizophrenia.
As for the initial matrix, all specificities in thisituation were over 90% for all
proteins.

Conclusions

In addition to the feature selection, combiningistig regression models with
singular value decomposition method allows betti&ssification of unknown
sequences than using SVD alone. Matrices used éogdmbined method are much
smaller than the original one, which leads to oféd oracles. The tool is perfectly
scalable and adaptable to huge problems because intdependent of reference

database size and much less from the length ohasglsequences.



Background

Searching for relevant patterns in protein sequeimea critical Bioinformatics goal.
Detected patterns can be used to classify unknegoences predicting genes family
or can be used to describe evolving relationshipegjuences group, instead of being
associated with the function or structural protestability [1]. Here we present a
computational tool to support genomic researchguainew method based on logistic

regression models to feature of protein sequerassification selection.

Firstly, we consider a bio molecular sequence wasitéen language that is recoded as
p-peptide frequency vector using all possible oveuilag p-peptides window. The
methodology was developed by Stuart, Moffett ankeBato generate whole genome
phylogenies using vector representations of pretegguence, and adapted by Couto
et al. [2, 3]. Each row of frequency vector is a peptibat is analyzed by logistic
regression to feature selection for protein seqeiemassification. Withp=2 we can
identify bipeptides associated with a specific ssmpes group. We also include
sequence length as another feature candidate istitboghodel that is built for each
target protein. After feature selection, the secobgkctive is to classify unknown
protein sequences. This can be done by logisticetsdolilt in the first step and by
using singular value decomposition (SVD) [4]. Tholjective is to identify amino
acids associated with a specific sequences grohp.aim is to find amino acids
which presence and absence, in terms of frequantyei sequence, is a pattern that

can be used to identify a specific protein group.



It is important to observe that, instead of use algnment analysis, the approach
applied is based on SVD, a linear algebra methbda tEchnique is similar as used in
information retrieval systems in large textual dases and Google™ web search
engine. Linear algebra is known as an efficientraggh to deal with semantic
relationships between a large numbers of elemenspaces of high dimensionality.
However, before using a linear algebra method, wednto represent proteins as
vectors in a high dimensional space, and then lzakgimilarities among them. So,
protein is represented as a vector built by frequesf all possible overlapping-
peptides along the sequence. Before using the ohme¢ein vector representation, it
IS necessary to discuss two issues: initially, géhisr a problem when a protein is
recoded as a frequency vectompgbeptides because the order of epgieptide in the
sequence is not considered. The second issue, ihaenecessity to evaluate if
Euclidean distance and cosine, similarity metrissduby linear algebra, are suitable

to evaluate biological similarities among proteins.

First question was discussed in a previous workenwkve concluded that the
representation ambiguity is a theoretical possybiln principle but not in practice
because two different proteins do not occupy tmeespoint in the high dimensional
space defined by the frequenpypeptides matrix [5]. Second question was also
discussed in other report where the relationshipragrsimilarity metrics from SVD,
cosine and Euclidean distance, and alignmentssttatiused by BLAST were
assessed [6]. In that work, we chose to compar® 8ith BLAST because this
string-matching program is widely used for searghof nucleotide and protein
databases [7]. We achieved similar results betwBeAST and SVD in several

protein analyses and concluded that SVD can be tesprbtein-protein comparisons



with biological significance of the similarities adtified both for cosine and
Euclidean distance [6]. Before these analysis, \ad hlready evaluated in two
different situations the relationship between cesamd Euclidean distance with the
edit distance, obtained from global sequence algrimusing dynamic programming
[3,8]. In both studies, edit distance, Euclideastatice and cosine were strongly
correlated. Euclidean distance was chosen hereubecaur previous results
recommend that this measure is better than cosieedluate similarities of proteins

represented as vectors [3, 6, and 8].

Methods

Figure 1 presents a flowchart summarizing the entiethod. First step is to get a
reference database with sequences of known protairfide with 516,081 curated
sequences from the Swiss-Prot section of the Usavdprotein Resource (UniProt)
was the protein collection used in all analysis ®]case-control study was done to
examine each target group. We tested the methedven instances: insulin, globin,
keratin, cytochrome and proteins related with cy&brosis, Alzheimer disease and
schizophrenia. In this approach, sequences fromtdhget group (the cases) are
selected from database for comparison with a seriesandom sequences where
protein is absent (the controls). For all groupsilable number of cases in database
is fixed and restricted, much smaller than the m@dmumbers. In order to try an
optimal allocation of cases and controls duringheBature selection analysis, we
used a 1:4 case: control ratio. The ratio of famdom controls to each case (4:1)
compensates a few numbers of cases, being enoudeteot features related with

each protein group [10].



In all analysis, protein sequences are recodedeptide frequency vectors using all
possible overlappingp-peptides window, which generates sparse matrices as
described by Stuart [2] and adapted by Ceettaal. [3]. With 20 amino-acids are
generated 20high-dimensional vectors, whepes the word-size. Each vector row is
the peptide that is analyzed by logistic regressmofeature selection for the protein
sequence classification. If we use a word-size anf one p=1) the features
considered are the amino-acids alone. This neelds ttone when we want to identify
amino acids associated to a specific sequencep gemuwhen we want to find amino
acids which presence and absence, in regard tognegy in the sequence, is a pattern
that can be used to identify a specific group aftgin. With p=2 there are 400
bipeptides which frequency can be associated tpeaif&c group of sequences. In
both analysis, ie, whep=1 or p=2, logistic regression models are build and can be
used for feature selection. We worked with onlylwpt1l andp=2 because, if the
vector was built with a word size higher, case nerabn database will be unable to
allow a logistic regression adjustment model. Baneple, withp=3 the number of

candidate features is 8,000, too much for the sasipke available.

A regression model was developed for each caseeatostudy, allowing feature
selection. Each logistic model can also be usegdreédlict the probability ) of a
sequence to be from a specific type of protein dory combination of the k

explanatory features in the model:

exp(ﬂo + Zk::BzX ij
= =1

_1+exp(,30 +Zk:,BiXi)
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In the above equatiomt is the probability of a sequence belongs to tlse caoupk
is the number of explanatory features significastiiected for the model aflis the
coefficient regression for each feature (i = 132,.k). The model-building strategy
for the feature selection was an automatic forwarepwise logistic regression

performed by SPSS (SPSS Inc., 2008).

After the bipeptides selection, the classificattdran unknown protein sequences can
be done by using singular value decomposition. [&ssify an unknown sequence by
SVD, proteins are recoded again only by the biplegtselected as important for each
target group. If m bipeptides are selected by twgstic regression, it generates a
matrix m x n, where n is the number of sequencedyaed. This new matrixiM)
produced for each target group and smaller thatir$teone that had size 400 x n, is
decomposed by SVDM=USV')[11]. U is the m x m orthogonal matrix having the
left singular vectors oM as its columnsy is the n x n orthogonal matrix having the
right singular vectors d¥1 as its columns, anflis the m x n diagonal matrix with the
singular valueso; > 0, = 03 2... 6, of M in order along (r is the rank &fi or the
number of linearly independent columns or rowsM). Before analyzes a query
(unknown sequence) a rank reduction of the frequematrix M is done by using the
k-largest singular values of M and generating tkgriaM, = SVi'. In this work we
used the method proposed by Everitt and Dunn [i&f tecommends analyzing the
relative variances of singular values from SVD.d&gk variance (Y captured by the
ith-singular value is equal to (B/>(Scw)% k = 1, 2, ... r. Singular values which
relative variance is less than 0.7/n, where nesnilimber of proteins in the matiik,
must be ignored. An unknown sequence is also recaoddy by the m bipeptides

selected by the logistic model, which generatesytrexy vector (q). This vector query
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is projected to reduced space of SVD, which prosug&=q Uy, After that, we
compute Euclidean distance among the vector qugjyad all protein vector in the
reduced spaceMy). The query category is defined by the proteinalbfsequences

from the case-control study, with shortest distatiocine vector query.

Sensitivity and specificity are calculated to ewuthe quality of SVD in classifying
unknown sequences (queries) [13]. Sensitivity ésadhance a known type sequence to
be correctly identified. Specificity measures tharce of a sequence from other type
than the target group to be negatively classifidtisource code was implemented in

MATLAB (The Mathworks, 1996).

Results

The method summarized in Figure 1 was applied wersdarget proteins: insulin,
globin, keratin, cytochrome and proteins relatedhwtystic fibrosis, Alzheimer
disease and schizophrenia. All cases and contrel® welected from Swiss-Prot
(http://www.uniprot.org/downloads), which is a dgent from the UniProt
Knowledgebase [9]. Swiss-Prot downloaded file cmstananually annotated and
reviewed protein with 516,081 sequences. Tables 71 present amino acids which
presence and absence, in terms of frequency isdfeence, is a pattern that can be
used to identify a specific protein group. All aysa¢ were made considering a
significant level of 0.05d = 5%) after forward stepwise logistic regressibhne odds
ratio for each amino acid, calculated by e, Wwheref3; is the regression coefficient,
summarizes the direction and frequency importanteeach amino acid to

characterize a gene. If odds ratio is higher th&h the amino acid must be in the
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sequence for a gene. If odds ratio is less thanthheDamino acid must be out the
sequence to characterize a specific gene. For dgamach cysteine in a sequence
increases the chance of the sequence to be insuliB4 times (table 1). On the other
hand, each aspartate in a sequence reduces 0&4 ttiem chance of the sequence to

be insulin.

Table 1 also shows that each residue of cystemggirle, arginine and tyrosine
increases the chance of a sequence to be inswlirglébin, higher is the number of
histidine, tryptophan, aspartate, phenylalaninainky, alanine, leucine or valine,
higher is the chance of the sequence to be this dfpprotein (table 2). Keratin
sequences (table 3) have a higher number of cgstserine, tyrosine, glutamate,
glutamine, glycine and arginine, with a smallergidn Table 4 shows how the
presence of phenylalanine, histidine and tyrosmeisequence is important to a
cytochrome. Presence of phenylalanine, isoleucleecine, arginine and serine
increases the probability of a sequence to be mgedowith cystic fibrosis (table 5).
Proteins associated with Alzheimer disease haveigheh number of cysteine,
glutamate, proline and valine in the sequence €t&)| The presence of histidine,
glutamine and serine is associated with proteilsta@ to schizophrenia (table 7). We
are focusing on a residue presence in the sequendearacterize a type of protein,
but in all analysis both situation, ie presence aosence, are described by the results

in tables 1 to 7.

After identifying amino acids related to a protewe made a feature selection for
sequence classification. For all seven target grpbpeptides and sequence length

were analyzed by forward stepwise logistic regmessiTable 8 presents, as an
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example, results for insulin, showing importanttieas to characterize this type of
protein. Only eight bipeptides from 400 are impottdor an insulin sequence.
Actually, double cysteines (CC), glycine followedg bysteine (GC) and tyrosine
followed by cysteine (YC) increases the chance eéguence to be insulin. On the
other side, a presence of the following bipeptigekices the chance of a sequence to
be insulin: histidine and tyrosine (HY), methionweh cysteine (MC), arginine with
cysteine (RC) and valine with aspartate (VD). Bipp frequency pattern of
cytochrome is summarized in table 9. Only eleveretiles are important to classify
this kind of protein. Same analysis was made flaiaadjet groups and can be achieved

for any other protein group.

To test the system during a query classificatiorknown sequences were randomly
selected from database and classified by SVD. Thssification quality of this
sample queries with SVD were summarized in tableRE3ults for the original SVD,
without the feature selection by logistic regressibie number of features selected by
logistic regression, sensitivity and specificitythe SVD query retrieval system made
after feature selection are presented in table S@nsitivity to classify unknown
sequences using the SVD system based on the ima#ix with 400 rows, ranged
from 76% for proteins related with Alzheimer diseaand more than 90% for the

other six groups. All specificities were over 9086 &ll proteins (table 10).

After reconstruction of the frequency matrix usiogly bipeptides identified by

logistic regression, decomposition by SVD and sqbseat rank reduction, query

retrieval has a sensitivity ranging from 74% fotaghrome to more than 90% for
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globin, keratin and proteins related to cysticd#is and schizophrenia. As an initial

matrix, all specificities in this situation wereen®0% for all proteins (table 10).

Discussion

Logistic regression was able to identify the amamtds and bipeptides important to
each proteins group. All bipeptides identified I tmethod can be associated, for
example, to sequence motifs widespread over théeiproHowever, the whole
understanding of the biological significance ofsdindings needs to be evaluated by
another bioinformatics tools and/or by experimeatsays, which will be analyzed in
future. All results presented by tables 1 to 9ex@mples of what is possible to do by

applying the method synthesized in figure 1.

In relation to the information retrieval system é&®n the combined method, logistic
regression with SVD, results in table 10 are vemynpsing. Although the system
build using the original matrix, without the featuselection, seems to be better, both
methods have similar behavior. Except for cytochepall sensitivity and specificity
are approximately the same. However, it is crucabserve that the matrix produced
only by the frequency of bipeptides selected asmamt for each sequences group by
the logistic regression is much smaller than thgimal matrix. All initial matrices
have 400 rows, while the matrix produced after dogiregression analysis has a
number of rows that varies from five to schizoplmemntil 51 for globin (table 10).
The matrix size, in terms of rows, is defined bg ttumber of bipeptides associated
with each target protein. If we intent to use S\ &nalyzing huge databases this

reduction is very attractive for information retré. This rank pre-reduction by
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logistic regression shows that method is scalabte adaptable to the problem, for
example a whole genome phylogeny. When we lookHersecond rank reduction,
based on relative variances of singular values f8MD, the number of factors needs
to query retrieval in the combined method, SVDA®bgi regression, is only between
two and three. The number of factors used in timk r@duction by SVD of the
original matrix, with 400 rows, ranged from 13 . Zhese results suggest that, while
the original matrix seems to have many groups e matrix has few groups (two
or three). Combining both methods SVD and logiségression produces perfect

oracle, where only approximately two groups ares@né

Conclusions

Proposed method, that combines logistic regressmmaels with singular value
decomposition, was successfully tested in sevetanoss. Application of logistic
regression for selecting a feature set associatea gpecific gene may represent a
possible technique to detect hard finding pattémnsrotein sequences. All evaluated
cases instead of initial 400 bipeptides, logisegression showed that only few
bipeptides are necessary to characterize speciteips groups. These peptides can
be related with hidden motifs in protein and sholld analyzed by another
bioinformatics tools.

In addition to the feature selection, the methoso adllows a classification of
unknown sequences in SVD/logistic regression natisystem composed by oracles.
Actually, the entire system is composed by k ogdbeiilt for specific proteins. Each

oracle is made by n cases and approximately 4rraengelected randomly from
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reference database and built according to the sahanfigure 1. A query is then

compared k-times, one in each oracle, which geeeraill possibilites for an

unknown sequence. The success in classifying eplievias equal to the original
system, without pre-rank reduction by logistic esgion. However, matrices sizes
used by the combined method are much smaller tiaoriginal one, which leads to
optimized oracles. The tool is perfectly scalabiel adaptable to huge problems
because it is independent from reference databaseasd much less from length of

the sequences involved.
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Figures

Get a reference
database with
sequences of

known proteins
(ex Swiss-Prot)

Define a target protein
(case)

Codify all N = (n + 4n)
selected proteins as a
frequency vector of
overlapping
bipeptides (candidate
features = 400
bipeptides)

Codify all N = (n + 4n)
selected proteins as a
frequency vector of

the 20 amino-acids

Select n cases and 4n
random controls from
database

Perform the feature selection using a
forward stepwise logistic regression to
identify the bipeptides related with the
target protein

Perform a forward stepwise logistic
regression to identify the amino-acids
related with the target protein

Build a frequency
matrix (M) by using
only the bipeptides
selected by logistic
regression.

Decompose the
matrix M by using
SVD - Singular Value
Decomposition:
M=UsvT

Perform a rank reduction of
the frequency matrix by

Get a unknown using the k-largest singular
protein (query) values of M and generating
the new matrix
M, = SV,

Build a query
frequency vector (q)
by using only the
bipeptides selected by
logistic regression.

Project the vector
query to reduced
space of SVD:
q*=q"U,

Compute cosine
between the vector
query and all protein
vector in the reduced
space

The query category is defined by
the protein with higher cosine with
the vector query.

Figure 1 — Flowchart with steps for the feature sel  ection and classification of

unknown sequence by logistic regression and SVD.
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Tables

Table 1 — Amino acids which frequencies are associated with i nsulin.

Regression Standard Wald c¢® Odds
Amino acid  coefficient error values P values Ratio
Alanine -0.1 0.0 4.2 0.039 0.91
Cysteine 0.6 0.1 64.3 0.000 1.84
Aspartate -0.2 0.1 10.9 0.001 0.81
Glycine -0.2 0.1 10.4 0.001 0.85
Isoleucine -0.2 0.1 11.6 0.001 0.79
Leucine 0.1 0.0 10.4 0.001 1.09
Asparagine -0.2 0.1 7.2 0.007 0.81
Arginine 0.2 0.0 20.3 0.000 1.18
Threonine -0.2 0.1 14.1 0.000 0.79
Valine -0.2 0.1 6.7 0.010 0.84
Tyrosine 0.2 0.1 4.0 0.046 1.20
Constant 1.9 0.4
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Table 2 — Amino acids which frequencies are associated with globin.

Regression  Standard Wald x* Odds

Amino acid coefficient error values Pvalues Ratio
Alanine 0.1 0.0 45.0 0.000 11
Cysteine -0.2 0.1 15.9 0.000 0.8
Aspartate 0.2 0.0 32.1 0.000 1.2
Glutamate -0.3 0.0 98.2 0.000 0.7
Phenylalanine 0.2 0.0 29.1 0.000 1.2
Glycine -0.2 0.0 38.8 0.000 0.8
Histidine 0.5 0.0 149.3 0.000 1.6
Isoleucine -0.3 0.0 85.3 0.000 0.7
Lysine 0.2 0.0 56.0 0.000 1.2
Leucine 0.1 0.0 8.4 0.004 11
Methionine -0.2 0.1 18.6 0.000 0.8
Proline -0.4 0.0 76.7 0.000 0.7
Glutamine -0.1 0.0 16.7 0.000 0.9
Arginine -0.2 0.0 37.4 0.000 0.8
Threonine -0.1 0.0 7.4 0.007 0.9
Valine 0.1 0.0 15.9 0.000 11
Tryptophan 0.3 0.1 26.8 0.000 14
Tyrosine -0.1 0.0 4.2 0.040 0.9
Constant 0.1
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Table 3 — Amino acids which frequencies are associated with k eratin.

Amino Regression  Standard Wald X Odds
acid/variable  coefficient error values Pvalues Ratio
Sequence

-0.03 0.0 19.1 0.000 0.97
length
Cysteine 0.34 0.0 74.9 0.000 1.41
Aspartate -0.21 0.1 14.6 0.000 0.81
Glutamate 0.20 0.0 43.2 0.000 1.22
Phenylalanine -0.32 0.1 28.9 0.000 0.72
Glycine 0.10 0.0 15.6 0.000 1.11
Histidine -0.22 0.1 8.9 0.003 0.80
Lysine -0.13 0.0 15.1 0.000 0.87
Proline -0.35 0.0 53.1 0.000 0.70
Glutamine 0.13 0.0 194 0.000 1.14
Arginine 0.08 0.0 6.2 0.013 1.08
Serine 0.31 0.0 70.5 0.000 1.36
Tryptophan -0.44 0.1 114 0.001 0.64
Tyrosine 0.23 0.1 19.7 0.000 1.26
Constant -1.15
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Table 4 — Amino acids which frequencies are associated with cytochrome.

Regression  Standard Wald x° Odds
Amino acid coefficient error values Pvalues Ratio
Alanine -0.2 0.1 12.8 0.000 0.8
Cysteine -0.3 0.1 4.4 0.036 0.8
Phenylalanine 0.3 0.1 18.4 0.000 1.4
Histidine 0.6 0.1 19.9 0.000 1.8
Lysine -0.6 0.1 30.3 0.000 0.6
Glutamine -0.5 0.1 22.1 0.000 0.6
Serine -0.2 0.1 10.2 0.001 0.8
Tyrosine 0.5 0.1 17.8 0.000 1.6
Constant 1.1
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Table 5 — Amino acids which frequencies are associated with p roteins
associated with cystic fibrosis.

Regression  Standard Wald x° Odds
Amino acid coefficient error values Pvalues Ratio
Alanine -0.1 0.0 15.0 0.000 0.9
Phenylalanine 0.1 0.0 8.0 0.005 1.2
Histidine -0.3 0.1 10.6 0.001 0.8
Isoleucine 0.1 0.0 9.5 0.002 11
Leucine 0.1 0.0 15.8 0.000 11
Asparagine -0.3 0.1 30.1 0.000 0.7
Proline -0.3 0.1 20.3 0.000 0.7
Arginine 0.1 0.0 10.2 0.001 11
Serine 0.2 0.0 19.9 0.000 1.2
Valine -0.1 0.0 10.4 0.001 0.9
Tyrosine -0.2 0.1 7.4 0.007 0.8
Constant -0.4
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Table 6 — Amino acids which frequencies are associated with proteins
associated with Alzheimer disease.

Regression  Standard Wald x° Odds
Amino acid coefficient error values Pvalues Ratio
Alanine -0.1 0.0 6.0 0.015 0.9
Cysteine 0.4 0.1 16.1 0.000 14
Glutamate 0.1 0.0 4.5 0.034 1.1
Phenylalanine -0.2 0.1 13.1 0.000 0.8
Asparagine -0.1 0.0 3.0 0.083 0.9
Proline 0.1 0.0 7.0 0.008 1.1
Arginine -0.2 0.1 7.9 0.005 0.9
Valine 0.2 0.0 11.9 0.001 1.2
Constant -2.0
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Table 7 — Amino acids which frequencies are associated with p roteins
associated with schizophrenia.

Amino Regression  Standard ~ Wald X Odds
acid coefficient error values P values Ratio
Glycine -0.2 0.1 4.0 0.046 0.8
Histidine 0.6 0.2 8.1 0.005 1.7
Lysine -0.3 0.1 9.6 0.002 0.7
Glutamine 0.4 0.1 9.5 0.002 1.6
Serine 0.3 0.1 11.4 0.001 1.3
Valine -11 0.3 11.6 0.001 0.3
Constant 19
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Table 8 — Stepwise regression logistic analysis for insulin.

Bipeptide/ variable ~ Regression coefficient Wald x? values P values
CC 6.5 24.7 0.000
CG 2.7 18.0 0.000
HY -3.1 2.9 0.049
MC -2.9 4.8 0.028
RC -3.6 9.7 0.002
VD -2.1 7.0 0.008
YC 5.3 18.0 0.000
YD -3.0 5.2 0.023
Sequence length 0.01 26.3 0.000
Constant -1.4
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Table 9 — Stepwise regression logistic analysis for cytochro

me.

Bipeptide Regression coefficient Wald x? values P values
DE -4.1 13.5 0.000
DM -5.4 19.7 0.000
FF 1.2 14.1 0.000
FH 2.7 16.7 0.000
FM 1.9 14.3 0.000
KM 11 4.3 0.039
KV -4.1 7.8 0.005
LK -3.0 20.7 0.000
MH 3.0 24.6 0.000
SA -1.8 12.9 0.000
VW 2.9 15.3 0.000
Constant -2.3
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Table 10 — Quiality of the classification of sample queries wit h SVD.

SVD using the matrix #bipeptides used SVD using the matrix

with 400 rows to build the with k rows
frequency matrix
Protein Sensitivity Specificity (k) Sensitivity Specificity
Insulin 94% 97% 8 89% 98%
Globin 96% 100% 51 92% 98%
Keratin 99% 100% 17 93% 98%
Cytochrome 91% 98% 11 74% 96%
Cystic fibrosis 91% 99% 20 95% 93%
Alzheimer 76% 94% 7 80% 91%
Schizophrenia  94% 94% 5 94% 94%
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Abstract We present a method that utilizes information fremown protein data-
bases to build logistic regression models thawafoediction of a new amino ac-
ids sequence. First step is to represent a prasgpeptide frequency vector us-
ing all possible overlapping-peptides window. Each vector frequency row
becomes a peptide that is analyzed by logisticessjon to feature selection for
protein sequence prediction. A file with curatedjisnces from the Swiss-Prot
was the protein collection used in all analysiscase-control study was done to
study each target group. In this approach, seqsefioen the target group (the
cases) are selected from database for comparigbrseiies of random sequences
where protein is absent (the controls). We tedtedhtethod in ten instances, gen-
erating ten models for predicting insulin, globkegratin, cytochrome, albumin,
collagen, fibrinogen and proteins related with irydibrosis, Alzheimer disease
and schizophrenia. Sensitivity to classify unknosaguences ranged from 72%
for collagen to 100% for keratin. Specificities wehnigher than 90% for all 10
groups. The method was successfully tested imstances.

1. Introduction

To predict the protein type of a new sequence eméswne of the Bioinfor-
matics objectives. This can be solved for exampleséarching for similarities
among the newly sequence and previous sequencasafaatabase, which usually
is made by pair-wise alignment methods (Altsoétudl. 1990). In this report, we
present a method that utilizes information from kngprotein database to build
logistic regression models that allow the predittmf a new amino acids se-
guence. After the model is built there is no moa¢galase searching or any com-
parison among the new sequence and known proteins.

First step is to represent a proteimpgseptide frequency vector using all possi-
ble overlappingp-peptides window. This methodology was developedshart,



Moffett and Baker, for generating whole genome pbghies using vector repre-
sentations of proteins sequence (Stehrdl. 2002). Each vector frequency row
represents a peptide that is analyzed by logisticassion to feature selection for
the protein sequence prediction. Here we recodeiprasingp=2, that allows us
to identify bipeptides which frequencies can bedusepredict a specific proteins
group. The sequence length is also a feature catedid the logistic model that is
built for each target protein. With the logistigression models built we can pre-
dict the type of protein that an unknown amino acdquence encodes.

It is important to observe that we chose to redbeeprotein as a vector built
by the frequency of all possible overlapping bijdgd along the sequence. Before
use any regression method on this (new) proteinneesl to validate this kind of
representation. The first problem when a proteireeoded as a frequency vector
of p-peptides is a possibility of ambiguity repnets¢ion because the order of each
p-peptide in the sequence is not considered. So,different proteins could be
represented by the same vector. The second isghe isecessity to evaluate if
protein vectors are suitable for meaningful biotadjianalysis.

The first question was discussed in a previous ywatten we concluded that
the ambiguity representation is a theoretical filityi in principle but not in prac-
tice because two different proteins do not occupy game point in the high di-
mensional space defined by frequency p-peptidesxr{&@outoet al. 2009a). The
second question was also discussed in other reyate the relationship among
similarity metrics calculated with protein vectasd pair-wise alignments statis-
tics were assessed (Cowtoal. 2009b). In that work, we achieved similar result
among the metrics calculated when protein are eatdy p-peptides window and
alignments statistics performed by BLAST (Altscletibl. 1990). In another two
papers (Coutet al. 2007; Marcolincet al. 2009), we had already evaluated the re-
lationship between the metrics calculated with @irovectors, actually cosine and
Euclidean distance, with the edit distance, obthiftem global sequence align-
ments using dynamic programming. Both studies, didittnce and Euclidean dis-
tance and edit distance and cosine were strongieleted. These previous analy-
sis indicate that protein vectors are suitablenfeaningful biological analysis. So,
we can analyze the bipeptides from the vector ssmiation by logistic regression
in order to build predictive models for proteinsgeet. This is the objective of this
work.

2. Material and methods

A flowchart of the protein sequence retrieval syste summarized in Figure 1.
First step is to get a reference database withesems of known proteins. A file
with 516,081 curated sequences from the Swissdewiton of the Universal Pro-
tein Resource (UniProt) was the protein collectised in all analysis (The Uni-
Prot Consortium 2010). A case-control study wasedmnstudy each target group.
We tested the method in ten instances: insulirhigldkeratin, cytochrome, albu-
min, collagen, fibrinogen and proteins related vayistic fibrosis, Alzheimer dis-



ease and schizophrenia. In this approach, sequédrarasthe target group (the
cases) are selected from database for comparistin avseries of random se-
quences where protein is absent (the controls). d@ogroups, the number of
available cases in database is fixed and restricbeith smaller than the number
of controls. In order to try an optimal allocatiohcases and controls during each
feature selection analysis, we used a 1:4 caseataatio. The ratio of four ran-
dom controls to each case (4:1) compensates thenfember of cases, being
enough to detect the features related with eachpgad protein (Schlesselman
1982).

Get a reference database
with sequences of known
proteins

(ex Swiss-Prot)

Select n cases and 4n
random controls from
database

Define a target protein
(case)

Codify all N = (n + 4n)
selected proteins as a
frequency vector of
averlapping
bipeptides

Perform the feature selection using a
forward stepwise logistic regression to
identify bipeptides (X;) related with the
target protein

Build the
logistic
regression Get an unknown
model to protein {query)
predict the
target
protein
(case)

Build a query
frequency vector (q)
by using the
bipeptides selected by
lagistic regression.

exp(ﬂo + iﬂiXi]

7= : -
& ;
Estimate the chance of the query
1+ exp(ﬁo +2)3.-X,-) to be a target protein by using
i=1

the model from each case.

Fig. 1.Flowchart with steps for building the logistic regsion models and to
predict the type of protein from an unknown seqeenc



In all analysis, protein sequences are recodep-@eptide frequency vectors
using all possible overlapping p-peptides windogttgenerates sparse matrices
as described by Stuaat al. (2002). With 20 amino-acids are generated 12gh-
dimensional vectors, whepeis the word-size. Each vector row is the peptics t
is analyzed by logistic regression to feature seledor the protein sequence pre-
diction. With p=2 there are 400 bipeptides that frequency cansbecéated to a
specific sequences group. Logistic regression nsog@ built and can be used for
feature selection. We worked with ory2 because, if the vector was built with a
word size higher, the number of cases in datab#dkbeaunable to allow a logistic
regression model adjustment. For example, with gie3number of candidate fea-
tures is 8,000, too much for the sample size aviaila

A regression model was developed for each caseaistudy, allowing fea-
ture selection. Each logistic model can also bel usepredict the probabilityrj
of a sequence to be from a specific type of proteirany combination of the k
explanatory features in the model:

exp(ﬁo + iIBiXi)
T = i:lk (1)
1 +exp(ﬂ0 +Z,BiXi)

In the above equatiorny is the probability of a sequence belongs to theeca
group, k is the number of explanatory featuresigamtly selected for the model
andf; is the coefficient regression for each feature (i, 2, 3 ...k). The model-
building strategy for the feature selection wasaatomatic forward stepwise lo-
gistic regression performed by SPSS (SPSS Inch@00he entire system, with
the logistic models obtained, becomes an applicateveloped in MATLAB (The
Mathworks, 1996). This protein sequence retrieyatesm predicts the type of pro-
tein a new sequence encodes, considering ten gtesigsl here.

Sensitivity and specificity were calculates to e the discriminant quality
of the logistic models in classifying unknown seees. Sensitivity is the chance
a known sequence of a type to be correctly identifiSpecificity measures the
chance of a sequence from other type than thettgrgap to be negatively classi-
fied. Definition of the best cut-off for the prohiiiies calculated by each model in
order to classify a query sequence was made by R@&eiver operating charac-
teristic’ curve analysis (Altman 1991).

3. Results and discussion

The method summarized in Figure 1 was appliedrirtdeget proteins: insulin,
globin, keratin, cytochrome, albumin, collagen,rifiogen and proteins related
with cystic fibrosis, Alzheimer disease and schimgmia. All cases and controls
were selected from Swiss-Prdittp://www.uniprot.org/downloads which is a




section from the UniProt Knowledgebase. Swiss-Ritetdownloaded contains
manually annotated and reviewed protein with 516 $&juences.

Tables 1 and 2 present bipeptides where presemtalsmence, in terms of fre-
quency in the sequence, is a pattern that can dx tosidentify a specific protein
group. All analysis were made considering a sigaiit level of 0.05¢ = 5%) af-
ter forward stepwise logistic regression. The odd® for each bipeptide, calcu-
lated by expi), where 3; is the regression coefficient, summarizes thectiva
and importance of the frequency of each bipeptideh@racterize a gene. If odds
ratio is higher than 1.0, the bipeptide must béhin sequence for a gene. If odds
ratio is less than 1.0, the bipeptide must be loaitsequence to characterize a spe-
cific gene. Table 1 presents, as an example, thatsefor insulin, showing the
features importance to characterize this type ofgim. Only eight bipeptides from
400 are important for an insulin sequence. Actyallyuble cysteines (CC), gly-
cine followed by cysteine (GC) and tyrosine follamMey cysteine (YC) increase
the chances of a sequence to be insulin. On tte¥ sitle, presence of the follow-
ing bipeptides reduces the chance of a sequenioe tesulin: histidine and tyro-
sine (HY), methionine with cysteine (MC), arginiwéh cysteine (RC) and valine
with aspartate (VD). The bipeptide frequency pattef cytochrome is summa-
rized in table 2. Only eleven bipetides are impurta classify this kind of pro-
tein. The number of explanatory variables for gaictein target ranged from only
five bipeptides for proteins related with schizagtia to 51 for globin. Same
analysis was made for all target groups and caach&ved for any other protein
group.

Figures 2 and 3 show the behavior of the logistadeh for globin when the
frequency of two bipeptides is changed in a seqeeWhen all other 50 bipep-
tides important to globin are kept constant, sroh#inges in the cysteine-tyrosine
frequency increases the chance of the sequence gtobin. On the other side, in
the same condition, when the cysteine-tyrosineuiegy increases the chance of
the sequence to be globin dramatically reduces.

Tab. 1.Stepwise logistic regression analysis for insulin.

Bipeptide/ variable Regression coeffi-  Wald x? P values
cient () values

CcC 6.5 24.7 0.000
CG 2.7 18.0 0.000
HY -3.1 2.9 0.049
MC -2.9 4.8 0.028
RC -3.6 9.7 0.002
VD 2.1 7.0 0.008
YC 5.3 18.0 0.000
YD -3.0 5.2 0.023
Sequence length 0.01 26.3 0.000

Constant -1.4




Tab. 2.Stepwise logistic regression analysis for cytho@om

Bipeptide/ variable Regression coeffi-  Wald x? P values
cient (3;) values

DE 4.1 135 0.000
DM -54 19.7 0.000
FF 1.2 141 0.000
FH 2.7 16.7 0.000
FM 1.9 14.3 0.000
KM 1.1 4.3 0.039
KV 4.1 7.8 0.005
LK -3.0 20.7 0.000
MH 3.0 24.6 0.000
SA -1.8 12.9 0.000
vwW 2.9 15.3 0.000
Constant -2.3

100%.

75%

Chance to be a globin

0%
8 9 10 11

Frequency of Cysteine-Tyrosine

Fig. 2.Example of a bipeptide (cysteine-tyrosine) whicagence increases
the chance of a sequence to be globin.

100%

50%

Chance to be a globin

75 76 7 78 79

Frequency of Lysine-Aspartate



Fig. 3.Example of a bipeptide (lysine-aspartate) whictspnee reduces the
chance of a sequence to be globin.

To test the system during a query classificatiatknewn sequences were ran-
domly selected from the database and classifieddo} logistic model. Since the
results of logistic equation (1) are a probabiigiue ranging from 0.0 to 1.0, we
need to choose a cut off to define if a sequenteeisarget group. Actually, logis-
tic regression allows us to distinguish those saqee likely or unlikely to be a
specific gene providing a probability value. Usyalie cut off is 0.50, meaning
that if the probability of the sequence to be gaagroup is higher than 0.50, then
the sequence classified as the case modeled bggtletion. ROC curves were
made for all ten target groups (Fig. 4 and 5). Weagbetter discrimination in six
sequences type: keratin, insulin, globin, cytoche@nd proteins related with cys-
tic fibrosis and Alzheimer disease (Fig. 4). Theeot4 proteins had a good result
but worse than the firsts (Fig. 5). The best citimfprobability is 33%, which
maximizes the sum of the sensitivity and specificieing nearest the top left-
hand corner of both ROC curves.

Classification quality of sample queries is sumaettiin table 3. Sensitivity to
classify unknown sequences ranged from 72% forageh to 100% for keratin.
Specificities were higher than 90% for all 10 greufince we used 33% as cut
off, if the probability model for a query is highdetan 0.33 so the sequence is clas-
sified as belonging to the target group.

100% —— = —e—Keratin

/—' —=— Insulin
—=— Globin

—s—Cytochrome

95% 2
—+— Cystic fibrosis

—s—Alzheimer

85%

Sensitivity

80%

5%

70%

0% 2‘% 4‘% EI% 8‘% WUI% 12‘%

False positive rate (1 - Specificity)
Fig. 4.ROC curve analysis for keratin, insulin, globintaghrome and pro-
teins related with cystic fibrosis and Alzheimesetise.



100% —+— Schizophrenia
—— Albumin
90% o —a— Collagen

—&—Fibrinogen
80%

T0%

60%

50%

Sensitivity

40%

30%

0% 5% 10% 15% 20% 25% 30%
False positive rate (1 - Specificity)

Fig. 5.ROC curve analysis for keratin, insulin, globintaghrome and pro-
teins related with cystic fibrosis and Alzheimeseatise.

Tab. 3.Classification quality of sample queries with ld@gigegression.
Classification using a cut-off =

Sample queries 33% in logistic probability
Protein N (cases) n (controls)  Sensitivity Specificity
Insulin 160 890 99% 96%
Globin 275 1438 99% 98%
Keratin 128 683 100% 98%
Cytochrome 53 272 98% 96%
Cystic fibrosis 114 560 98% 93%
Alzheimer 30 156 80% 97%
Schizophrenia 39 171 90% 91%
Albumin 170 912 86% 89%
Collagen 999 4794 72% 93%
Fibrinogen 472 2291 82% 91%

4. Conclusion

The method was successfully tested in ten instarkfées achieving the logis-
tic models, the problem to predict the protein tgbe&a new sequence encode be-
came simple. In addition to good results theretew® important features in the
proposed method: firstly, the modeling phase isenaga case-control study that
do not use all database, but only samples for ¢agjet protein. This way the



modeling problem becomes fast and adaptable to prg@ems. The second and
most important characteristic of this method id,théter the modeling phase, the
entire system reduces to a few source code witintarface to receive queries, a
subroutine to recode amino acids sequences asefiegwectors and the logistic
equations to predict probabilities. After the moiebuilt there is no more data-
base searching or any comparison among the nevesegand known proteins.

It has not escaped our notice that the peptides pai each protein group sug-
gest a possible biological meaning. All bipeptidntified by the method can be
associated, for example, to sequence motifs wigaspbover the protein. How-
ever, the whole understanding of the biologicalngigance of these findings
needs to be evaluated by another bioinformatick and/or by experimental as-
says, which will be analyzed in future. These pigstishould be analyzed by other
tool that seeks for substrings that must be in sege at the same time that other
patterns must be left out of the sequence.

The tool is perfectly scalable and independentlyhef reference database size
and much less of the length of the sequences iedolwformation retrieved from
reference database with known protein sequencefigd’ in predictive models
that reveal frequency bipeptides patterns from gactein type.
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Abstract Phylogeny is an important field to understand evolution and the organiza-
tion of life. However, most methods depend highly on manual study and
analysis, making the construction of phylogeny error prone. Linear Algebra
methods are known to be efficient to deal with the semantic relationships between
a large number of elements in spaces of high dimensionality. Therefore, they can
be useful to help the construction of phylogenetic trees. The ability to visualize the
relationships between genomes is crucial in this process. In this paper, a linear al-
gebra method, followed by optimization, is used to generate a visualization of a
set of complete genomes. Using the proposed method we were able to visualize
the relationships of 64 complete mitochondrial genomes, organized as six different
groups, and of 31 complete mitochondrial genomes of mammals, organized as
nine different groups. The prespecified groups could be seen clustered together in
the visualization, and similar species were represented close together. Besides,
there seems to be an evolutionary influence in the organization of the graph.

1. Introduction

Phylogeny is a very important field to understand evolution and the organiza-
tion of life. However, many molecular phylogenies are built using sequences sam-
pled from only a few genes. Besides, most methods depend highly on manual
study and analysis, making the construction of phylogeny based on whole ge-
nomes difficult and error prone. The problem of analyzing genomes, however, is
very similar to information retrieval from a large set of documents. In both prob-
lems, it is necessary to deal with an enormous amount of information, and to find
semantic links between data. Fortunately, there are very good algorithms to deal
with information retrieval. Singular value decomposition (SVD), for example, is
used with great success (Berry ef al. 1994). For example, linear algebra methods
are used even by Google, enabling a better comprehension of a system as complex
as the Internet (Eldén 2006; Stuart et al. 2002) presents a method to build phylog-
eny trees using SVD to analyze genomes. The method is demonstrated with verte-



brate mitochondrial genomes, and is later used to analyze whole bacterial genomes
and whole eukaryotic genomes (Stuart and Berry 2004). Linear algebra methods
are also used to study the different genotypes in the human population (Huggins et
al. 2007).

Visualization techniques are essential to better analyze complex systems and
can be very helpful to categorize species. There are a number of visualization tools
to study a single genome (Lewis et al. 2002; Engels et al. 2006; Rutherford et al.
2000; Stothard and Wishart 2005; Gibson and Smith 2003; Ghai et al. 2004).
However it is desirable to visualize the relationships between a set of genomes, in
order to better comprehend the species. In Xie and Schlick (2000) is presented a
visualization technique using SVD to analyze chemical databases. In this paper,
we used that technique as a basis to develop a method for using genomes to visu-
alize relationships among species in space (2D and 3D). This can facilitate the
construction of phylogeny trees, enabling the analyzer to quickly have insights in
the similarities between the different species. We are going to show the results of
our approach using 832 mitochondrial proteins obtained from 64 whole mitochon-
drial genomes of vertebrates.

2. Material and methods

2.1 Sequence data

We used the same set of proteins as Stuart et al. (2002), 64 whole mitochon-
drial genomes from the NCBI genome database, each one with 13 genes, totaling
832 proteins in the data set. The following species were used in this paper: Al-
ligator mississippiensis, Artibeus jamaicensis, Aythya americana, Balaenoptera
musculus, Balaenoptera physalus, Bos taurus, Canis familiaris, Carassius aura-
tus, Cavia porcellus, Ceratotherium simum, Chelonia mydas, Chrysemys picta,
Ciconia boyciana, Ciconia ciconia, Corvus frugilegus, Crossostoma lacustre,
Cyprinus carpio, Danio rerio, Dasypus novemcinctus, Didelphis virginiana, Di-
nodon semicarinatus, Equus asinus, FEquus caballus, Erinaceus europaeus,
Eumeces egregius, Falco peregrinus, Felis catus, Gadus morhua, Gallus gallus,
Halichoerus grypus, Hippopotamus amphibius, Homo sapiens, Latimeria chalum-
nae, Loxodonta africana, Macropus robustus, Mus musculus, Mustelus manazo,
Myoxus glis, Oncorhynchus mykiss, Ornithorhynchus anatinus, Orycteropus afer,
Oryctolagus cuniculus, Ovis aries, Paralichthys olivaceus, Pelomedusa subrufa,
Phoca vitulina, Polypterus ornatipinnis, Pongo pygmaeus abelii, Protopterus dol-
loi, Raja radiata, Rattus norvegicus, Rhea americana, Rhinoceros unicornis,
Salmo salar, Salvelinus alpinus, Salvelinus fontinalis, Scyliorhinus canicula,
Smithornis sharpei, Squalus acanthias, Struthio camelus, Sus scrofa, Sciurus
vulgaris, Talpa europaea, and Vidua chalybeata.



2.2 Representation method

In order to visualize the genomes, we must represent each one as a point in
space. The distance between the points should represent the differences in the ge-
nomes as a whole. Therefore, we might expect similar species to be close together
in space. The genome proteins were represented as vectors of frequencies of
groups of amino acids. In this paper, a sliding window of size 3 was used to meas-
ure the frequency. To represent the genome we used the vector sum of all its pro-
teins. We are going to evaluate the appropriateness of this representation in the se-
quence. Therefore, we can obtain a database of genomes, S, as a rectangular

matrix, X, where each line corresponds to one of the n genomes:
i X 0t X

.
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As can be seen, the representation cannot be visualized in this high-
dimensional space. With 20 amino acids, and considering that unknown amino ac-
ids are represented as a separated letter of the alphabet, each genome vector has m
=2"=9,261 dimensions. Therefore, to generate a suitable visualization, it is nec-
essary to reduce the dimensionality of the space, with the minimum loss of infor-
mation. When a representation in reduced space, Y, is generated for the database
matrix X , we can calculate an error function E as following:

E =sz:(‘5ij _Vij)2

where §;; is the euclidean distance between genome i and j in the original space,
represented in the matrix X, and v; is the euclidean distance between genome i
and j in the reduced space, represented in the matrix Y . The best representation
of S in the reduced space will be the Y with the minimal associated error function.
Therefore, we must solve an unconstrained optimization problem. Many methods
can be used to solve this problem. In Xie and Schlick (2000), the truncated-
newton minimization method is used. In this paper, we used a technique based on
the interior-reflective Newton method. Singular value decomposition (SVD) is a
popular method to reduce the dimensionality of a space, keeping the fundamental
semantic association among the vectors in that space. Therefore, a good initial
solution for the optimization problem can be obtained using the singular value de-
composition (SVD) of X . The matrix is represented as X = UZV" , where U =
[wuy ...u), X = diag(c,, 0, ...,6,),V=[V|V,...Vp]. An approximation of
X in reduced space (Xy) is given by:

p
X =D uov ks p.

i=1



In this paper, we generated both two and three dimensional repre-
sentations. We used a rank 2 approximation of X as the initial solution for the
former, and a rank 3 approximation as the initial solution for the latter. After the
optimization procedure, we have the best representation of the genomes to be
visualized in a reduced space.

3. Results and discussion

We used the proposed approach to generate two and three dimensional visuali-
zations of 64 whole mitochondrial genomes with 832 proteins. First, we are going
to evaluate if the euclidean distance of genomes using the chosen representation is
suitable to evaluate the similarities between them. Couto et al. (2007) showed that
the similarity of genome sequences can be measured by the euclidean distance in
a reduced dimensional space of tripeptides descriptors. They found a correlation
between the euclidean distance and global distance sequence alignment of +0.70.
To perform a similar analysis we created 64 supersequences by concatenating the
13 genes from each organism. These supersequences were compared by using
global edit distance between each pair of sequences and euclidean distance in the
high-dimensional space. As in Couto et al. (2007), the correlation between the edit
distance and euclidean distance was +0.70, but this time in a cubic model (P <
0.01; Figure 1). We can see, therefore, that the euclidean distance of genome se-
quences using the chosen representation can be used as a measure of similarity.
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ig. 1. Scatter plot of euclidean distance and global edit distance.

We classified the species according to the class. Therefore, the following
groups were used: Aves, Mammalia, Reptilia, Actinopterygii, Sarcopterygii, Chon-
drichtyes. In Figure 2 we can see the 2D and 3D results. As can be observed, the
different class had a tendency to form groups in space. In the 2D graph we can see
that mammals (mammalia) are in the bottom, birds (aves) are in the upper
left, reptiles (reptilia) are generally in the middle left, and fishes (actinopterygii,



sarcopterygii, chondirchthyes) are in the upper right. It is notorious how the birds
are close together in a single cluster. In the results in 3D the classes are even better
clustered. This time, reptiles, birds and fishes are in distinctly separated groups.
Only the class of the fishes are somewhat mixed.

50
o 8,
40 ‘. 5%
O
30+ % %
20F T+ +  Aves **
O Mammalia
10 *
*  Reptilia
o . Actinopterygii *
X Sarcopterygii
-10f )
@ O  Chondrichthyes O
_20 .
o
-30f ©0 O
Oy ©°
O
_40 1 1 1 1 1 J

-140 -120 -100 -80 -60 -40 -20

ig. 2. Visualization of genomes in 2D and in 3D.

It is interesting to observe the relationships between the classes, as similar
groups tend to be near in space. The position of the class in the graphs seems to be
related to the evolutionary scale. Considering the 2D graph as an ellipse, we can
see that the reptiles are between the mammals and the fishes. In 3D this can be ob-



served a second time. However, the evolutionary relationship between reptiles and
birds is more clear in 3D, as there is no group between them.

Both in 2D and in 3D, mammals form a clearly distinct group from all other
classes. They occupy a vast area, which might indicate more extensive diversity.
We can also note that some mammals form clusters, what might be interesting to
analyze. In order to better explore how the mammals are organized we separated
this class in nine different groups: (i) Prototheria, corresponding to species in this
subclass; (i) Marsupialia, corresponding to species in this infraclass; (iii) Chirop-
tera, corresponding to species in this ordo; (iv) Cetartiodactyla, corresponding to
species in this superordo; (v) Carnivora, corresponding to species in this ordo;
(vi) Perissodactyla, corresponding to species in this ordo; (vii) Primates, corre-
sponding to individuals in this ordo; (viii) Rodentia, corresponding to indi-
viduals in this ordo; (ix) Placentalia, corresponding to all other individuals that
are in this infraclass, but were not classified in any other group. In Figure 3 we can
see an approximation of the region of the mammals with this new classification.
Similar species appeared close together, as was expected. This shows another ad-
vantage of the proposed method: as each genome is represented as points in space,
we can easily select a region to better explore, zooming in and out in the graph as
appropriate for the analysis.

The proposed method, however, allows another way to visualize a selected
group of genomes. We can reduce the original set and run the algorithm a second
time. Therefore, in order to better visualize the mammals, we executed the algo-
rithm with only this class in the database. The result can be seen in Figure 4. It is
interesting to note that the 2D graph has a similar elliptic format as in Figure 2.
Clusters that were difficult to observe in Figure 3 are very clear in this graph.
Similar species are again near to each other, showing visually the proximities of
the genomes. In 3D the only group that mixed with the others is the Placentalia,
but this was expected, as this group is very general, holding greatly different indi-
viduals. All other groups occupy distinct positions in space. We can see, therefore,
that the proposed method allows many interesting observations and analysis of a
group of genomes. Prespecified groups could be seen as clusters in the resulting
graphs and the positions of the species seem to be related to their evolutionary
stage. We also showed how approximating a region of the graph or running the al-
gorithm a second time with a reduced data set allows a better insight of the rela-
tionships among selected groups of genomes. The resulting graphs can be gener-
ated both in two and in three dimensions for visualization.

4. Conclusion

In this paper, we used a linear algebra method, followed by optimization, to
visualize genomes in two and in three dimensional spaces. A set of complete mi-
tochondrial genomes were used to test the algorithm. Graphs were generated to
visualize the complete set and a reduced set of similar species. We noted that the



method was able to automatically cluster some of the predefined groups and bio-
logically similar species were represented as near points in space. We also noted
that the position of the genomes in space seems to be related to the evolutionary
stage of the species. Our future work is directed towards using this mechanism to
visualize a large set of proteins. In this way, relationships between them can be
easily observed and quickly explored, facilitating new discoveries. It would also
be interesting to use this technique to explore a vast number of genomes, and fur-
ther explore how it can be used to gain insight in evolution and in the phylogenetic
relationships between the species.
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Fig. 3. Approximation of the region of the mammals in 2D and in 3D.
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Abstract

Background
Genomics experiments have produced massive amotimsiltivariate data that are

being collected into public databases. In this adenvisualizing the non-visual high
dimensional data plays an important role. This pgpesents an approach, the
SVD/optimization method, to map multivariate datapsoteins sequence from their
high dimensional representation into 2D or 3D spac&he high-dimensional
visualization problem ird™ is formulated as a distance-geometry problem, fce.
find n points in low space (2D or 3D) so that thigiterpoint distances match the
corresponding values from™ as closely as possible. Firstly, protein sequeaces
recoded as tripeptide frequency vector using aBsfiide overlapping tripeptides
window. After to describe protein sequences asovedh a high-dimensional space,
we applied a rank reduction by using singular valkeeomposition (SVD) that is
followed by optimization for visualizing proteinsxé genomes in low-dimensional
space. To validate the SVD/optimization method wegared all results with PCA —
Principal Components Analysis.

Results

Proposed method was successfully tested in thretanoes: a set geographic
coordinates, other with whole mitochondrial genonaesl a third database with
proteins from five families. The SVD/optimizationethod had better visualization
results than PCA.

Conclusions

The method was able to correctly visualize highatisional and multivariate data in
low space. Predefined groups of protein and bicklly similar species were

represented as near points in space and corrastgrdinated.
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Background

Genomics experiments have produced massive amotimtsiltivariate data that are
being collected into public databases. Mining théa&a to understand relationships
between different clustering results, to genergfetheses about gene function or to
build phylogenetic trees became critical. In thignario, visualizing the non-visual

high dimensional data plays an important role.

The importance of visualization when hidden infotiorais extracted from a data set
is far beyond any metric. For example, a corretatioefficient without its scatter plot
could lead to a misleading result. Pictures, gregplaind even a photograph can be
very captivating and much more informative than tbles of numbers [1]. Actually,
human beings are highly connected to graphs, imagdsvisual information [2, 3].
Scientific visualization, an advancing branch oformation visualization, maps
physical phenomena onto 2D or 3D representatioitsures are constructed from
data that represent the underlying phenomena ado&w image of the pattern of
peak and valleys on the ocean floor [1]. Howevealization of inherently abstract

information as in protein databases is much moadietging.

The objective of this paper is to present an agfrda map multivariate data as
proteins sequence from their high dimensional msgr&ation into 2D or 3D space.
The high-dimensional visualization problem¥' can be formulated as a distance-
geometry problem, i.e., to find n points in low spa(2D or 3D) so that their
interpoint distances match the corresponding vafums 0™ as closely as possible

[4, 5]. The idea is to preserve the inherent datzckire, the geometric relationships
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among all protein vectors in high-dimensional spadee visualization tool proposed
here tries to preserve the original similarity tielaships in the data set. Samples that
are near each other in high-dimensional space bell visualized in the same

neighborhood.

Firstly, we consider a bio molecular sequence asitten language that is recoded as
p-peptide frequency vector using all possible oveuilag p-peptides window. The
methodology was developed by Stuart, Moffett ankeBato generate whole genome
phylogenies using vector representations of pretegguence, and adapted by Couto
et al.[6, 7]. Withp=3 and 20 amino acids, the space protein vectoathdimension

of 20° = 8,000 rows. After to describe protein sequenassvectors in a high-
dimensional space of tri-peptides descriptors, yeliead a rank reduction by using
singular value decomposition (SVD) [8] that is €fmlled by optimization for

visualizing proteins and genomes in low-dimensiapace (2D or 3D).

It is important to observe that, instead of use algnment analysis, the approach
applied is based on SVD, a linear algebra methbd fBchnique is similar as used in
information retrieval systems in large textual datses and Google™ web search
engine. Linear algebra is known as an efficientrapgh to deal with semantic

relationships between a large numbers of elemenspaces of high dimensionality.

However, before using a linear algebra method, wednto represent proteins as
vectors in a high dimensional space, and then &gimilarities among them. So,

protein is represented as a vector built by frequenf all possible overlapping-

peptides along the sequence. Before using the ohmséein vector representation, it



IS necessary to discuss two issues: initially, géhisr a problem when a protein is
recoded as a frequency vectompgbeptides because the order of epgieptide in the

sequence is not considered. The second issue, ihaenecessity to evaluate if
Euclidean distance and cosine, similarity metrissduby linear algebra, are suitable

to evaluate biological similarities among proteins.

First question was discussed in a previous workenwkve concluded that the
representation ambiguity is a theoretical possybiln principle but not in practice
because two different proteins do not occupy thmespoint in the high dimensional
space defined by the frequenpypeptides matrix [9]. Second question was also
discussed in other report where the relationshipragrsimilarity metrics from SVD,
cosine and Euclidean distance, and alignmentssttati used by BLAST were
assessed [10]. In that work, we chose to comp#i@ ®ith BLAST because this
string-matching program is widely used for searghof nucleotide and protein
databases [11]. We achieved similar results betwBleAST and SVD in several
protein analyses and concluded that SVD can be tasptbtein-protein comparisons
with biological significance of the similarities adtified both for cosine and
Euclidean distance [12]. Before these analyseshae already evaluated in two
different situations the relationship between cesamd Euclidean distance with the
edit distance, obtained from global sequence algrimusing dynamic programming
[7, 12]. In both studies, edit distance, Euclideidstance and cosine were strongly
correlated. Euclidean distance was chosen hereubecaur previous results
recommend that this measure is better than cosieedluate similarities of proteins

represented as vectors.



Methods

Figure 1 presents a flowchart summarizing the enttechnique, called
SVD/optimization method. In order to visualize ttegabases, we must represent each
element as a point in space. The distance betweempdints should represent the
differences between each element as a whole. Tdrerefve might expect similar
elements to be close together in space. In allyarsabf protein sequences, they can
recoded ag-peptide frequency vectors using all possible oygilag p-peptides
window, which generates sparse matrices as dedchipeStuart [7] and adapted by
Couto et al. [8]. With 20 amino-acids are generated® 2igh-dimensional vectors,
where p is the word-size. Each vector row is a peptidd thescribes the protein
sequence. In this paper, a sliding window of staed p=3) was used to build the
frequency matrixM, with dimension mxn, i.e., m=8,000 rows amds the number of

proteins in data set:

4 e

X1 X X1n )
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wherex;; is the frequency of the tripeptideonto the protein sequengeAs can be
seen, the representation cannot be visualized is ligh-dimensional space.
Therefore, to generate a suitable visualization,isitnecessary to reduce the
dimensionality of the space, with the minimum losk information. When a
representation in reduced spave,is generated for the database mallix we can

calculate an error functida as following:

E:Zn:i(ﬁif _711)2

i=1 j=1



where §; is the Euclidean distancédetween genome i and j in the original space,
represented in the matrM, andy; is theEuclidean distancéetween genome i and
J in the reduced space, represented in the métrixhe best representation Mf in
the reduced space will be thé with the minimal associated error function.
Therefore, we must solve an unconstrained optinezgiroblem. Many methods can
be used to solve this problem. In Xie and Schli&, [the truncated-newton
minimization method is used. In this paper, we uséechnique based on the interior-
reflective Newton method, actually the conjugateaddgent Newton's method. Before
to minimize the objective functioB, original matrixM is decomposed by SVD such
thatM=USV" [8]. U is the m x m orthogonal matrix having the leftggitar vectors
of M as its columnsy is the n x n orthogonal matrix having the rightgsilar vectors
of M as its columns, anflis the m x n diagonal matrix with the singularuegdo; >

0, = 03 ... 0; of M in order along (r is the rank &l or the number of linearly

independent columns or rows Mdf).

Before the visualization be possible, after findithg n points in low space (2D or
3D), a rank reduction of the frequency mathk is done by using the k-largest
singular values ofl which generates the new mathik = US V. In this work we
analyze the relative variances of singular valuesafSVD in order to identify the k-
largest singular values & . Relative variance (Y captured by the ith-singular value
is equal to (8)7Xk(Sc)% k = 1, 2, ... r. This previous rank reduction by[3\ done

in order to eliminate noises and redundanciesdiatexist in database. It is important
to observe that, if there is not any noisy or rethnty inside the database, all singular

values ofM will be used in the optimization phase. This happecause the number



of significant singular values in matriM is related to the number of independent

features of the matrix, i.e., the real matrix rank.

To validate the SVD/optimization method describadFigure 1, we compared all
results with a PCA — Principal Components Analy2]sthat was used independently

to visualize original matricesl .

Previously to protein analysis, we applied the psgal method to a set of geographic
coordinates of all the Brazilian capitals, plusdied district. Actually, in order to
create a two dimensional map of Brazil, we analyzae@6x26 matrix with the

distances among the twenty six Brazilian capitals pederal district.

The second database used was the same set ohpratebtuaret al [6], 64 whole
mitochondrial genomes from the NCBI genome databaaeh one with 13 genes,
totaling 832 proteins in the data set. The follgy species were used in this
paper: Alligator mississippiensis, Artibeus jamaicensis,ythtf)a americana,
Balaenoptera musculus, Balaenoptera physalus, tasus, Canis familiaris,
Carassius auratus, Cavia porcellus, Ceratotheriunmusn, Chelonia mydas,
Chrysemys picta, Ciconia boyciana, Ciconia ciegniCorvus frugilegus,
Crossostoma lacustre, Cyprinus carpio, Danio @grDasypus novemcinctus,
Didelphis virginiana, Dinodon semicarinatus, Equasinus, Equus caballus,
Erinaceus europaeus, Eumeces egregius, Falco peregr Felis catus, Gadus
morhua, Gallus gallus, Halichoerus grypus, Hippauous amphibius, Homo
sapiens, Latimeria chalumnae, Loxodonta africanaacMpus robustus, Mus

musculus, Mustelus manazo, Myoxus glis, Oncorhynehykiss, Ornithorhynchus



anatinus, Orycteropus afer, Oryctolagus cuniculu®yis aries, Paralichthys
olivaceus, Pelomedusa subrufa, Phoca vitulina, ptelus ornatipinnis, Pongo
pygmaeus abelii, Protopterus dolloi, Raja radiatdRattus norvegicus, Rhea
americana, Rhinoceros unicornis, Salmo salar, Samlue alpinus, Salvelinus
fontinalis, Scyliorhinus canicula, Smithornis spar, Squalus acanthias, Struthio

camelus, Sus scrofa, Sciurus vulgaris, Talpa ewrapand Vidua chalybeata

For the last test, we utilized a set of 4,888 pnstebelonging to five families:
amidohydrolase, crotonase, enolase, haloacid dgd@dse and vicinal oxygen

chelate (VOC).

Results

On the first experiment, PCA and the method desdrbFigure 1 received a 26x26
matrix which represents the distances among th&ragilian capitals plus federal
district. The objective is to visualize a two dims@nal draft map of Brazil by using
those distances. Figures 2 and 3 present origiapl owerlapped with the PCA results
and SVD/optimization draft. We can see that algfoboth methods have given good
results, PCA is less accurate. PCA failed to fiamdhest points of the center, whereas
our method was equally effective in all cases. Bging successfully
SVD/optimization method to map physical phenomem@ @D representation, which
was validated by PCA, we want to show that our wetls really valid. The
importance of this test is that, unlike most of ttega discussed in Bioinformatics,
there is an optimal solution, and it is easily fied. Thus it is easier to see the quality

of solutions.



For the second test, we used the proposed appr@thPCA to generate three
dimensional visualizations of 64 whole mitochondigggnomes. To perform this
analysis we created 64 supersequences by condatertaeé 13 genes from each
organism of the dataset. A sliding window of dsizeee p=3) was used to build the
frequency matrixM, with dimension 8,000 x 64. This frequency matmxs analyzed
by PCA and SVD/optimization method. It is interagtto observe that, as describe in
Figure 1, the optimization is not made in the er&imatrixM, but in the new matrix
produced after rank reduction using the k-largesjdar values oM. In figure 4 we
can see that a large part of the data is compogemibe and redundancies: after the
twentieth singular value relative variance is miain§o the optimization is applied in
the matrixMy, built by using only the 20-largest singular vabfeghe original matrix
M. This previous SVD rank reduction is a interestiegture of our method, unlike
PCA, it makes a noise suppression early in ordefitoinate any interference in data
visualization. Figures 5 and 6 show the 3D viswaion of the 64 whole
mitochondrial genomes. The objective functBnminimized during the optimization
phase, i.e., the square of sum of differences filoenreal and calculated Euclidean
distances among all genomes, was calculated usenthtee dimensional coordinates
produced by both methods, PCA and SVD/optimizat\de reached an impressive
result: an improvement of 119 times on precisiomaf method, compared to PCA.
That result was achieved only because of the pusv&VD rank reduction, which is a

important contribution of the proposed method.

On the last experiment, we utilized a set of 4,p8&eins, belongs to five families.

Through figure 7, we can realize that the numbegigrfiificant singular values it is no
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bigger than five, which is compatible with the nwenbof families in dataset. .
Therefore, it is possible to reduce the originaltira rank from 4,888 to only 5,
which means a big elimination of noises and, tlaubetter visualization of the data.
One more time, it is possible to realize that owthnd was capable of better group
the elements, as can be seen on Figures 8 ands@alyi picture produced by the
SVD/optimization method was able to better discniaté all groups than the figure

obtained by PCA.

Conclusions

Proposed method, that combines singular value deosition with optimization to

visualize high dimensional and multivariate dataswsuccessfully tested in three
instances. A set geographic coordinates, otherwiitble mitochondrial genomes and
a third database with proteins from five familiesres used to test the method, which
was compared with PCA. Graphs were generated t@hze the complete set of all
databases. We noted that the method was able riectgrlocate points on space and
to automatically cluster some of the predefinedtgiro groups and biologically

similar species were represented as near pointgpatce. We also noted that the
position of the genomes in space seems to be defatthe evolutionary stage of the
species. Our future work is directed towards ughig technique to explore a vast
number of genomes, and further explore how it canubed to gain insight in

evolution and in the phylogenetic relationships agspecies.

-11 -
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Figures

Get a matrix M (mxn) with n high
dimensional ®™ vectors describing n
objects or phenomena under
analysis

l

Decompose the matrix
M by using SVD —
Singular Value
Decomposition:

M = UsSvT

Perform a rank reduction of the
matrix by using the k-largest
singular values of M and
generating the new matrix
M, =US,V,T

l

To find n points in low space (2D or 3D) so that their interpoint distances match the
corresponding values from R™ as closely as possible.
To use conjugated gradient Newton's method to minimize the objective function

E=Zt_:§(5,-,-—7_i,-)2

where d; is the euclidean distance between genome i and j in the original space,
represented in the matrix M,, andv; is the euclidean distance between genome i and j in
the reduced space, represented in the matrix Y.

Figure 1 — Flowchart with steps for visualizing hig h dimensional and
multivariate data applying singular value decomposi tion followed by

optimization.
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Figure 5 — 3D visualization of whole mitochondrial genomes: results obtained
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Figure 6 — 3D visualization of whole mitochondrial genomes: results obtained

by PCA.
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Discussao

Observando os sete artigos colocados nos capitulos 1 a 7 desta tese, surgem algumas

perguntas cujas respostas podem ser extraidas do préprio trabalho:

a) Sequéncias primarias de proteinas podem ser representadas como vetores de

frequéncia de p-peptideos?

Sim, sequéncias primarias de proteinas podem ser representadas como vetores de

frequéncia de p-peptideos.

As figuras 1, 2 e 5 do capitulo 2 referem-se a exemplos genéricos e numéricos da
construcao dos vetores de frequéncia de p-peptideos. Ja a figura 4 do capitulo 2
apresenta o codigo fonte em MATLAB (The Mathworks, 1996) para a construcao dos
vetores e da respectiva matriz de freqiiéncia de p-peptideos. E interessante observar
que, apods a reducao de posto da matriz de freqiéncia de aminoé&cidos (figura 6 do
capitulo 2), ha uma consequente redugcdo da variabilidade na freqiéncia de cada
aminoacido que caracterizam uma familia de genes. Esta reducdo na variabilidade
nos atributos que caracterizam familias protéicas apds a reducédo de posto é uma
consequéncia da SVD que ndo foi totalmente explorada na tese, podendo ser fonte

de trabalho futuro.

De qualquer forma, os resultados mostram que é possivel codificar proteinas como
vetores de frequéncia de p-peptideos em O™, onde m = 20° e p é o nimero de
aminoacidos no peptideo (p=1, 2, 3, 4). Por meio da redu¢éo de posto da SVD pode-
se ainda visualizar proteinas em espaco bi e tridimensional (figura 7 do capitulo 2,
figuras 1 e 6 do capitulo 1). Além disto, torna-se viavel a andlise de similaridades por
meio de métricas da Algebra Linear, como distancia Euclidiana e cosseno. Em
relacdo a uma possivel “ambigtidade” na codificacdo vetorial proposta, que nao leva
em consideracao a ordem com que 0 p-peptideo aparece na sequéncia, este aspecto
foi comentado nos capitulos 1, 4, 5 e 7. Apesar da possibilidade de duas proteinas
diferentes poderem ser codificadas pelo mesmo vetor de frequéncias, na pratica esta

“ambiguidade” ndo foi constatada. Na verdade, duas sequéncias diferentes ndo
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ocupam 0 mesmo ponto do espaco multidimensional definido pela matriz de
frequéncia de p-peptideos (COUTO et al., 2009).

Qual é o significado biologico da decomposi¢éo em valores singulares (SVD)?

Resultados discutidos no capitulo 3 mostram que a visualizagdo dos valores
singulares obtidos pela SVD ajuda a identificar os principais componentes, 0s
processos escondidos num banco de dados. A idéia ndo é apresentar um valor
especifico, mas uma faixa de possiveis valores para, por exemplo, 0 nimero de
grupos de proteinas numa base de dados. Esta mesma idéia j& foi aplicada a dados
de microarray, no qual valores singulares mais significantes podem estar associados

com grupos de genes ou com a estrutura de ciclos celulares (Wall et al., 2003).

Do ponto de vista bioldgico, tem significado a andlise de similaridade de proteinas

por meio da comparacédo de vetores de frequéncia de p-peptideos?

« Medidas de similaridade da SVD, distancia Euclidiana e cosseno, estdo
associadas com a distancia global de edi¢do?

« Medidas de similaridade da SVD, distancia Euclidiana e cosseno, estdo
associadas com medidas de similaridade usadas pelo BLAST, E value e bit
score?

» Se houver associagdo entre as métricas de similaridade da SVD, do alinhamento
global de sequéncias e do BLAST, é possivel encontrar modelos de previsdo
entre as métricas envolvidas? Ou seja, € possivel prever uma medida de
similaridade por meio de outra?

* Quando da classificacdo de uma sequéncia protéica desconhecida, qual é o grau
de concordancia entre cosseno e distancia Euclidiana com o resultado gerado
pelo BLAST?

A andlise de similaridade de sequéncias protéicas, por meio da comparacdo de
vetores de frequéncia de p-peptideos, tem significado biolégico similar aquele da
andlise de similaridade obtida com alinhamentos de sequéncias que envolvem

comparacgOes caractere-a-caractere, ponderadas por matrizes de substituicdo.

Técnicas de correlagdo e regressao linear (NETER et al.,, 1996) foram usadas na
andlise da associacdo entre a distancia de edicdo, obtida por algoritmos de
programagdo dindmica em alinhamentos multiplos, as métricas de similaridade da

SVD, cosseno e distancia Euclidiana, e estatisticas geradas pelo programa BLAST.
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As figuras 9 e 10 do capitulo 2 e a figura 1 do capitulo 6 mostram que ha uma forte
associacdo entre as medidas de similaridade da SVD, distancia Euclidiana e
cosseno, com a distancia global de edi¢do. A equacgéo 6 do capitulo 2 sugere uma
relacdo matematica que pode ser usada para se prever a distancia global de edicao,

com base na distancia Euclidiana entre dois vetores de proteinas.

As figuras 2, 3 e 5 do capitulo 1 mostram que ha uma forte associacdo entre as
métricas de similaridade da SVD com aquelas usadas pelo BLAST. A obtencéo de
um modelo de predicdo, por exemplo, do bit score em fun¢éo da distancia Euclidiana
entre dois vetores protéicos, é um trabalho futuro que pode ser feito a partir dos
resultados observados no capitulo 1 da tese.

Em relacdo a capacidade discriminante de sistemas baseados em vetores de
frequéncia de p-peptiedos e SVD, as figuras 14 e 15 do capitulo 2 mostram que bons
resultados podem obtidos quando da classificacdo de sequéncias teste. Nestes
exemplos, o padrao ouro usado foi a propria definicAo da categoria da proteina,
conforme a sua descricdo no banco de dados de origem. Na comparagcdo da
classificagdo da SVD com aquela obtida pelo BLAST (figuras 7 e 8 e tabelas 1 e 2 do

capitulo 1) houve boa concordancia de resultados entre os dois métodos.

Em suma, os resultados apresentados nos testes dos capitulos 1 e 2 mostram que
as métricas da SVD ndo somente correlacionam-se com as estatisticas do BLAST
como apresentam bom grau de concordancia quando da classificacdo das mesmas

sequéncias.

Qual o impacto de se usar bases de dados com sequéncias redundantes na

pesquisa por homologia?

As chances de descobertas bioldégicas sdo maximizadas se a pesquisa por
homologia for feita em bases de dados mais atualizadas, que crescem rapidamente
nao s6 em tamanho, mas também em redundéancia. Nas bases publicas, h4 uma
super representatividade de sequéncias idénticas, de mesmo tamanho e com
residuos na mesma posicdo, e outras muito proximas, com mais de 90% de
identidade. Esta distribuicdo desigual no espaco de sequéncias é causada por um
vicio na propria pesquisa genémica e na existéncia de agrupamentos (clusteres) de
sequéncias muito préximas, de familias de genes de diferentes espécies e

organismos que existem naturalmente devido a duplicacdo génica (PARK et al.,
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2000; HOLM e SANDER, 1998). A busca por similaridades feita por meio de
algoritmos baseados em alinhamentos de sequéncias é fortemente afetada pelo grau
de redundéancia da base de dados. Por exemplo, o vicio devido a super abundancia
de certas familias protéicas pode afetar os métodos de escore dos programas de
pesquisa (PARK et al., 2000). No BLAST, a significancia estatistica de um
alinhamento depende do tamanho da base de dados. Pela equacdo de Karlin e
Altschul (ALTSCHUL et al., 1990), o numero de alinhamentos esperados de ocorrer
devido ao acaso (E) é uma func¢éo linear ao tamanho do espacgo de pesquisa (m*n) e

€ exponencialmente dependente do escore normalizado de similaridade (AS):

E = kmne_;tS.

Assim, se o tamanho do espaco de pesquisa dobra, o nimero de alinhamentos
aleatérios com um particular escore também dobra. Cada sequéncia redundante
aumenta artificialmente a base de dados e, consequentemente reduz a significancia

estatistica de um alinhamento (Korf et al., 2003).

Quando se usa SVD, a reducao de posto descrita nos capitulos 1, 2 e 4, faz com as
redundancias nas bases de dados ndo tenham qualquer efeito nas andlises de
similaridade. A reducdo de posto da SVD elimina automaticamente qualquer
influéncia do grau de redundancia de uma base na comparagdo entre vetores

protéicos.

E possivel identificar aminoacidos importantes para a classificagdo de uma
determinada categoria de proteina por meio dos vetores de frequéncia de

aminoacidos?

Estudos baseados nas amostragens tipo caso-controle descritas nos capitulos 4 e 5
e analises por meio de regressdo logistica dos vetores de freqiéncia de
aminodcidos, descritos na figura 1 do capitulo 4, permitem identificar aminoacidos

importantes para a classificacdo de uma determinada categoria de proteina.
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E possivel identificar bipeptideos importantes para a classificacdo de uma
determinada categoria de proteina por meio dos vetores de frequéncia de

bipeptideos?

Os esquemas descritos na figura 1 do capitulo 4 e na figura 1 do capitulo 5 permitem
identificar bipeptideos importantes para a classificacdo de uma determinada
categoria de proteina. Investigar as razdes bioldégicas que poderiam justificar a
importancia tanto dos aminoacidos quanto dos bipeptideos identificados nos modelos

de regressao logistica estimados nos capitulos 4 e 5 sdo temas de trabalhos futuros.

Como mapear a relacdo multidimensional de genomas e outros dados multivariados

para o espaco bi e tridimensional (2D e 3D)?

O mapeamento multidimensional em 0™ de genomas e outros dados multivariados
para o espaco bi e tridimensional (2D e 3D), tratado nos capitulos 6 e 7, foi
formulado como um problema geométrico: encontrar n pontos no espaco 2D ou 3D
de tal forma que suas distancias inter-pontos no espaco original se mantenham mais

proximas quanto possivel no espacgo reduzido.

Nos resultados apresentados no capitulo 6, a SVD, com redugé&o de posto 2 ou 3, foi
usada somente como valor inicial para o método de minimizacdo usado para

encontrar as coordenadas de cada vetor no espaco reduzido.

J& no capitulo 7 a SVD teve um papel fundamental, pois o0 espaco multidimensional
original ndo foi considerado e sim o espa¢co multidimensional obtido com a reducéo
de posto da matriz em O™ (figura 1 do capitulo 7). As novas coordenadas em 0% e [°
foram obtidas de tal forma que as distancias inter-pontos no espaco reduzido da SVD

fossem mais proximas quanto possivel no espaco reduzido.
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Conclusoes

Pode-se afirmar que a principal conclusdo desta tese refere-se a validade biolégica do uso

da decomposicdo em valores singulares (SVD) para analise de similaridade e extracdo de

padr6es em sequéncias protéicas. Antes da realizacdo deste trabalho, persistiam muitas

davidas em relacdo a significancia biolégica de se considerar uma proteina como um vetor

no espaco multidimensional e, principalmente, quanto a validade da analise de similaridade

por meio de técnicas de Algebra Linear. Mesmo sem se trabalhar com matrizes de

substituicdo nem com algoritmos de alinhamentos de sequéncias, foram obtidos resultados

biologicamente validos.

Em relagéo a trabalhos futuros, como era esperado, varias frentes de trabalho se abriram,

entre elas:

a)

b)

d)

Investigacdo sobre os efeitos da diminuicdo na variabilidade da frequéncia de p-

peptideos quando se faz redugéo de posto com a SVD.

Estimacdo de modelos de previsdo das métricas de alinhamento de sequéncias em

funcao da distancia Euclidiana e/ou do cosseno entre dois vetores protéicos.

Anélise da viabilidade de se fazer uma nova decomposi¢cio em valores singulares de
tal forma que a reconstrucdo da matriz usando posto reduzido produza somente
valores positivos; 0s termos desta nova matriz poderdo ser usados num modelo de
regressao logistica em que as variaveis explicativas sejam as freqléncias de p-
peptideos, recalculadas com o posto reduzido. Na verdade, foi feita uma tentativa
de se fazer uma modelagem apo6s a reducdo de posto, mas alguns valores das
novas frequéncias de bipeptideos, recalculadas apds a redugédo de posto da SVD,

ficaram negativos e perderam sentido fisico.

Construcdo de um sistema web based de recuperacao de informacédo de sequéncias
protéicas desconhecidas por meio de modelos de regressao logistica. Na verdade, a
idéia € expandir os resultados do capitulo 5 para o maior nimero possivel de grupos

de proteinas, usando outras bases de dados de referéncia.
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e) Investigar as razbGes bioloégicas que poderiam justificar a importancia dos
aminoacidos e bipeptideos identificados nos modelos de regressédo logistica

estimados nos capitulos 4 e 5.

f) Uso dos bipeptideos, definidos nos capitulos 4 e 5 como importantes para cada um
dos grupos de proteinas analisadas, para se encontrar motivos protéicos. Na
verdade, seria uma analise de motivos especiais (motifs), definidos ndo s6 pela
presenca de determinados bipeptideos, mas também pela simultanea auséncia de

outros.

Para finalizar, a mais relevante contribuicdo desta tese foi demonstrar a viabilidade de se
codificar vetorialmente uma proteina. Descrever uma proteina na forma de um vetor permite
que ndo s6 a SVD possa ser usada na sua analise, mas todas as ferramentas da
Matematica, da Fisica, da Estatistica, da Geometria e da propria Algebra Linear, utilizadas
na manipulacdo de vetores e matrizes, também poderdo ser usadas na busca por

similaridades e na extracao de padrdes em sequéncias protéicas.
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